ClusMFL: A Cluster-Enhanced Framework for Modality-Incomplete Multimodal Federated Learning in Brain Imaging Analysis
- URL: http://arxiv.org/abs/2502.12180v1
- Date: Fri, 14 Feb 2025 09:33:59 GMT
- Title: ClusMFL: A Cluster-Enhanced Framework for Modality-Incomplete Multimodal Federated Learning in Brain Imaging Analysis
- Authors: Xinpeng Wang, Rong Zhou, Han Xie, Xiaoying Tang, Lifang He, Carl Yang,
- Abstract summary: In the context of brain imaging analysis, modality incompleteness presents a significant challenge.<n>We propose ClusMFL, a novel MFL framework that leverages feature clustering for cross-institutional brain imaging analysis.<n>ClusMFL achieves state-of-the-art performance compared to various baseline methods across varying levels of modality incompleteness.
- Score: 28.767460351377462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Federated Learning (MFL) has emerged as a promising approach for collaboratively training multimodal models across distributed clients, particularly in healthcare domains. In the context of brain imaging analysis, modality incompleteness presents a significant challenge, where some institutions may lack specific imaging modalities (e.g., PET, MRI, or CT) due to privacy concerns, device limitations, or data availability issues. While existing work typically assumes modality completeness or oversimplifies missing-modality scenarios, we simulate a more realistic setting by considering both client-level and instance-level modality incompleteness in this study. Building on this realistic simulation, we propose ClusMFL, a novel MFL framework that leverages feature clustering for cross-institutional brain imaging analysis under modality incompleteness. Specifically, ClusMFL utilizes the FINCH algorithm to construct a pool of cluster centers for the feature embeddings of each modality-label pair, effectively capturing fine-grained data distributions. These cluster centers are then used for feature alignment within each modality through supervised contrastive learning, while also acting as proxies for missing modalities, allowing cross-modal knowledge transfer. Furthermore, ClusMFL employs a modality-aware aggregation strategy, further enhancing the model's performance in scenarios with severe modality incompleteness. We evaluate the proposed framework on the ADNI dataset, utilizing structural MRI and PET scans. Extensive experimental results demonstrate that ClusMFL achieves state-of-the-art performance compared to various baseline methods across varying levels of modality incompleteness, providing a scalable solution for cross-institutional brain imaging analysis.
Related papers
- Completed Feature Disentanglement Learning for Multimodal MRIs Analysis [36.32164729310868]
Feature disentanglement (FD)-based methods have achieved significant success in multimodal learning (MML)
We propose a novel Complete Feature Disentanglement (CFD) strategy that recovers the lost information during feature decoupling.
Specifically, the CFD strategy not only identifies modality-shared and modality-specific features, but also decouples shared features among subsets of multimodal inputs.
arXiv Detail & Related papers (2024-07-06T01:49:38Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI)
We propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data.
In the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness.
arXiv Detail & Related papers (2024-06-12T20:35:16Z) - Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
This paper delves into the task of arbitrary modality salient object detection (AM SOD)
It aims to detect salient objects from arbitrary modalities, eg RGB images, RGB-D images, and RGB-D-T images.
A novel modality-adaptive Transformer (MAT) will be proposed to investigate two fundamental challenges of AM SOD.
arXiv Detail & Related papers (2024-05-06T11:02:02Z) - FedMM: Federated Multi-Modal Learning with Modality Heterogeneity in
Computational Pathology [3.802258033231335]
Federated Multi-Modal (FedMM) is a learning framework that trains multiple single-modal feature extractors to enhance subsequent classification performance.
FedMM notably outperforms two baselines in accuracy and AUC metrics.
arXiv Detail & Related papers (2024-02-24T16:58:42Z) - Multi-Modal Federated Learning for Cancer Staging over Non-IID Datasets with Unbalanced Modalities [9.476402318365446]
In this work, we introduce a novel FL architecture designed to accommodate not only the heterogeneity of data samples, but also the inherent heterogeneity/non-uniformity of data modalities across institutions.
We propose a solution by devising a distributed gradient blending and proximity-aware client weighting strategy tailored for multi-modal FL.
arXiv Detail & Related papers (2024-01-07T23:45:01Z) - Learning Multiscale Consistency for Self-supervised Electron Microscopy
Instance Segmentation [48.267001230607306]
We propose a pretraining framework that enhances multiscale consistency in EM volumes.
Our approach leverages a Siamese network architecture, integrating strong and weak data augmentations.
It effectively captures voxel and feature consistency, showing promise for learning transferable representations for EM analysis.
arXiv Detail & Related papers (2023-08-19T05:49:13Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts.
Most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity.
We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient parcellation of 198 SWM clusters from whole-brain tractography.
arXiv Detail & Related papers (2022-07-18T23:07:53Z) - A Novel Unified Conditional Score-based Generative Framework for
Multi-modal Medical Image Completion [54.512440195060584]
We propose the Unified Multi-Modal Conditional Score-based Generative Model (UMM-CSGM) to take advantage of Score-based Generative Model (SGM)
UMM-CSGM employs a novel multi-in multi-out Conditional Score Network (mm-CSN) to learn a comprehensive set of cross-modal conditional distributions.
Experiments on BraTS19 dataset show that the UMM-CSGM can more reliably synthesize the heterogeneous enhancement and irregular area in tumor-induced lesions.
arXiv Detail & Related papers (2022-07-07T16:57:21Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
To train a high-quality deep learning model, the aggregation of a significant amount of patient information is required.
Due to the need to protect the privacy of patient data, it is hard to assemble a central database from multiple institutions.
Federated learning allows for population-level models to be trained without centralizing entities' data.
arXiv Detail & Related papers (2020-01-16T04:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.