Optimal Brain Iterative Merging: Mitigating Interference in LLM Merging
- URL: http://arxiv.org/abs/2502.12217v1
- Date: Mon, 17 Feb 2025 09:07:49 GMT
- Title: Optimal Brain Iterative Merging: Mitigating Interference in LLM Merging
- Authors: Zhixiang Wang, Zhenyu Mao, Yixuan Qiao, Yunfang Wu, Biye Li,
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive capabilities, but their high computational costs pose challenges for customization.
Model merging offers a cost-effective alternative, yet existing methods suffer from interference among parameters, leading to performance degradation.
We propose Optimal Brain Iterative Merging, a novel method designed to mitigate both intra-model and inter-model interference.
- Score: 11.708743111945727
- License:
- Abstract: Large Language Models (LLMs) have demonstrated impressive capabilities, but their high computational costs pose challenges for customization. Model merging offers a cost-effective alternative, yet existing methods suffer from interference among parameters, leading to performance degradation. In this work, we propose Optimal Brain Iterative Merging (OBIM), a novel method designed to mitigate both intra-model and inter-model interference. OBIM consists of two key components: (1) A saliency measurement mechanism that evaluates parameter importance based on loss changes induced by individual weight alterations, reducing intra-model interference by preserving only high-saliency parameters. (2) A mutually exclusive iterative merging framework, which incrementally integrates models using a binary mask to avoid direct parameter averaging, thereby mitigating inter-model interference. We validate OBIM through experiments on both Supervised Fine-Tuned (SFT) models and post-pretrained checkpoints. The results show that OBIM significantly outperforms existing merging techniques. Overall, OBIM provides an effective and practical solution for enhancing LLM merging.
Related papers
- Fast and Interpretable Mixed-Integer Linear Program Solving by Learning Model Reduction [24.3088703166792]
This paper aims to learn a reduced and equivalent model of the original MILP as an intermediate step.
The reduced model often corresponds to interpretable operations and is much simpler, enabling us to solve large-scale MILP problems much faster than existing commercial solvers.
We introduce an attention mechanism to capture and represent preference information, which helps improve the performance of model reduction learning tasks.
arXiv Detail & Related papers (2024-12-31T06:50:42Z) - R-MTLLMF: Resilient Multi-Task Large Language Model Fusion at the Wireless Edge [78.26352952957909]
Multi-task large language models (MTLLMs) are important for many applications at the wireless edge, where users demand specialized models to handle multiple tasks efficiently.
The concept of model fusion via task vectors has emerged as an efficient approach for combining fine-tuning parameters to produce an MTLLM.
In this paper, the problem of enabling edge users to collaboratively craft such MTLMs via tasks vectors is studied, under the assumption of worst-case adversarial attacks.
arXiv Detail & Related papers (2024-11-27T10:57:06Z) - Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
Multi-task learning (MTL) leverages a shared model to accomplish multiple tasks and facilitate knowledge transfer.
We propose a Weight-Ensembling Mixture of Experts (WEMoE) method for multi-task model merging.
We show that WEMoE and E-WEMoE outperform state-of-the-art (SOTA) model merging methods in terms of MTL performance, generalization, and robustness.
arXiv Detail & Related papers (2024-10-29T07:16:31Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - MoS: Unleashing Parameter Efficiency of Low-Rank Adaptation with Mixture of Shards [35.163843138935455]
The rapid scaling of large language models requires more lightweight finetuning methods to reduce the explosive GPU memory overhead.
Our research highlights the indispensable role of differentiation in reversing the detrimental effects of pure sharing.
We propose Mixture of Shards (MoS), incorporating both inter-layer and intra-layer sharing schemes, and integrating four nearly cost-free differentiation strategies.
arXiv Detail & Related papers (2024-10-01T07:47:03Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - DPPA: Pruning Method for Large Language Model to Model Merging [39.13317231533299]
We introduce a dual-stage method termed Dynamic Pruning Partition Amplification (DPPA) to tackle the challenge of merging complex fine-tuned models.
We show that our method maintains a mere 20% of domain-specific parameters and yet delivers a performance comparable to other methodologies.
Our method displays outstanding performance post-pruning, leading to a significant improvement of nearly 20% performance in model merging.
arXiv Detail & Related papers (2024-03-05T09:12:49Z) - Meta-Learning Adversarial Bandit Algorithms [55.72892209124227]
We study online meta-learning with bandit feedback.
We learn to tune online mirror descent generalization (OMD) with self-concordant barrier regularizers.
arXiv Detail & Related papers (2023-07-05T13:52:10Z) - TIES-Merging: Resolving Interference When Merging Models [95.59265307318752]
Transfer learning can confer significant advantages, including improved downstream performance, faster convergence, and better sample efficiency.
Model merging has emerged as a solution to combine multiple task-specific models into a single model without performing additional training.
Existing merging methods often ignore the interference between parameters of different models, resulting in large performance drops when merging multiple models.
We propose TIES-Merging, which introduces three novel steps when merging models: resetting parameters that only changed a small amount during fine-tuning, resolving sign conflicts, and merging only the parameters that are in alignment with the final agreed-upon sign.
arXiv Detail & Related papers (2023-06-02T17:31:32Z) - Multi-Agent Reinforcement Learning via Adaptive Kalman Temporal
Difference and Successor Representation [32.80370188601152]
The paper proposes the Multi-Agent Adaptive Kalman Temporal Difference (MAK-TD) framework and its Successor Representation-based variant, referred to as the MAK-SR.
The proposed MAK-TD/SR frameworks consider the continuous nature of the action-space that is associated with high dimensional multi-agent environments.
arXiv Detail & Related papers (2021-12-30T18:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.