SparAMX: Accelerating Compressed LLMs Token Generation on AMX-powered CPUs
- URL: http://arxiv.org/abs/2502.12444v1
- Date: Tue, 18 Feb 2025 02:26:34 GMT
- Title: SparAMX: Accelerating Compressed LLMs Token Generation on AMX-powered CPUs
- Authors: Ahmed F. AbouElhamayed, Jordan Dotzel, Yash Akhauri, Chi-Chih Chang, Sameh Gobriel, J. Pablo Muñoz, Vui Seng Chua, Nilesh Jain, Mohamed S. Abdelfattah,
- Abstract summary: Accelerating large language models with CPUs enables broader AI access at a lower cost and power consumption.
We provide a set of open-source customized sparse kernels that can speed up any PyTorch model.
We demonstrate for the first time the use of unstructured sparsity in the attention achieving a $1.14 times$ speedup over the current systems.
- Score: 5.760049762453579
- License:
- Abstract: Large language models have high compute, latency, and memory requirements. While specialized accelerators such as GPUs and TPUs typically run these workloads, CPUs are more widely available and consume less energy. Accelerating LLMs with CPUs enables broader AI access at a lower cost and power consumption. This acceleration potential for CPUs is especially relevant during the memory-bound decoding stage of LLM inference, which processes one token at a time and is becoming increasingly utilized with reasoning models. We utilize Advanced Matrix Extensions (AMX) support on the latest Intel CPUs together with unstructured sparsity to achieve a $1.42 \times$ reduction in end-to-end latency compared to the current PyTorch implementation by applying our technique in linear layers. We provide a set of open-source customized sparse kernels that can speed up any PyTorch model by automatically replacing all linear layers with our custom sparse implementation. Furthermore, we demonstrate for the first time the use of unstructured sparsity in the attention computation achieving a $1.14 \times$ speedup over the current systems without compromising accuracy. Code: https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SparAMX
Related papers
- Benchmarking Edge AI Platforms for High-Performance ML Inference [0.0]
Edge computing's growing prominence, due to its ability to reduce communication latency and enable real-time processing, is promoting the rise of high-performance, heterogeneous System-on-Chip solutions.
While current approaches often involve scaling down modern hardware, the performance characteristics of neural network workloads can vary significantly.
We compare the latency and throughput of various linear algebra and neural network inference tasks across CPU-only, CPU/GPU, and CPU/NPU integrated solutions.
arXiv Detail & Related papers (2024-09-23T08:27:27Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks.
We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs.
We show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x.
arXiv Detail & Related papers (2024-05-06T16:03:32Z) - HiRE: High Recall Approximate Top-$k$ Estimation for Efficient LLM
Inference [68.59839755875252]
HiRE comprises of two novel components: (i) a compression scheme to cheaply predict top-$k$ rows/columns with high recall, followed by full computation restricted to the predicted subset, and (ii) DA-TOP-$k$: an efficient multi-device approximate top-$k$ operator.
We demonstrate that on a one billion parameter model, HiRE applied to both the softmax as well as feedforward layers, achieves almost matching pretraining and downstream accuracy, and speeds up inference latency by $1.47times$ on a single TPUv5e device.
arXiv Detail & Related papers (2024-02-14T18:04:36Z) - Efficient LLM Inference on CPUs [8.802223672775844]
Large language models (LLMs) have demonstrated remarkable performance and tremendous potential across a wide range of tasks.
deploying these models has been challenging due to the astronomical amount of model parameters.
We propose an effective approach that can make the deployment of LLMs more efficiently.
arXiv Detail & Related papers (2023-11-01T13:08:50Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
Given a function represented as a computation graph, traditional architectures face challenges in efficiently computing its nth-order gradient.
We introduce INR-Arch, a framework that transforms the computation graph of an nth-order gradient into a hardware-optimized dataflow architecture.
We present results that demonstrate 1.8-4.8x and 1.5-3.6x speedup compared to CPU and GPU baselines respectively.
arXiv Detail & Related papers (2023-08-11T04:24:39Z) - An Efficient Sparse Inference Software Accelerator for Transformer-based
Language Models on CPUs [12.883586189626431]
Transformer-based language models have become the standard approach for natural language processing tasks.
Most existing neural network inference runtimes lack adequate support for structured sparsity.
We propose an efficient sparse deep learning inference software stack for Transformer-based language models.
arXiv Detail & Related papers (2023-06-28T23:55:51Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - PopSparse: Accelerated block sparse matrix multiplication on IPU [0.5661403709207713]
We introduce PopSparse, a library that enables fast sparse operations on Graphcore IPUs.
We target two different types of sparsity: static, where the sparsity pattern is fixed at compile-time; and dynamic, where it can change each time the model is run.
Results indicate that the PopSparse implementations are faster than dense matrix multiplications on IPU at a range of sparsity levels.
arXiv Detail & Related papers (2023-03-29T20:00:19Z) - FlexGen: High-Throughput Generative Inference of Large Language Models
with a Single GPU [89.2451963569343]
FlexGen is a generation engine for running large language model (LLM) inference on a single commodity GPU.
When running OPT-175B on a single 16GB GPU, FlexGen achieves significantly higher throughput compared to state-of-the-art offloading systems.
On the HELM benchmark, FlexGen can benchmark a 30B model with a 16GB GPU on 7 representative sub-scenarios in 21 hours.
arXiv Detail & Related papers (2023-03-13T05:19:28Z) - VEGETA: Vertically-Integrated Extensions for Sparse/Dense GEMM Tile
Acceleration on CPUs [7.807134159136234]
This work presents VEGETA, a set of ISA and microarchitecture extensions over dense matrix engines to support flexible structured sparsity for CPUs.
A VEGETA engine provides 1.09x, 2.20x, 3.74x, and 3.28x speed-ups when running 4:4 (dense), 2:4, 1:4, and unstructured sparse layers.
arXiv Detail & Related papers (2023-02-17T04:35:58Z) - PLSSVM: A (multi-)GPGPU-accelerated Least Squares Support Vector Machine [68.8204255655161]
Support Vector Machines (SVMs) are widely used in machine learning.
However, even modern and optimized implementations do not scale well for large non-trivial dense data sets on cutting-edge hardware.
PLSSVM can be used as a drop-in replacement for an LVM.
arXiv Detail & Related papers (2022-02-25T13:24:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.