Mixture of Attention Yields Accurate Results for Tabular Data
- URL: http://arxiv.org/abs/2502.12507v1
- Date: Tue, 18 Feb 2025 03:43:42 GMT
- Title: Mixture of Attention Yields Accurate Results for Tabular Data
- Authors: Xuechen Li, Yupeng Li, Jian Liu, Xiaolin Jin, Tian Yang, Xin Hu,
- Abstract summary: We propose MAYA, an encoder-decoder transformer-based framework.
In the encoder, we design a Mixture of Attention (MOA) that constructs multiple parallel attention branches.
We employ collaborative learning with a dynamic consistency weight constraint to produce more robust representations.
- Score: 21.410818837489973
- License:
- Abstract: Tabular data inherently exhibits significant feature heterogeneity, but existing transformer-based methods lack specialized mechanisms to handle this property. To bridge the gap, we propose MAYA, an encoder-decoder transformer-based framework. In the encoder, we design a Mixture of Attention (MOA) that constructs multiple parallel attention branches and averages the features at each branch, effectively fusing heterogeneous features while limiting parameter growth. Additionally, we employ collaborative learning with a dynamic consistency weight constraint to produce more robust representations. In the decoder stage, cross-attention is utilized to seamlessly integrate tabular data with corresponding label features. This dual-attention mechanism effectively captures both intra-instance and inter-instance interactions. We evaluate the proposed method on a wide range of datasets and compare it with other state-of-the-art transformer-based methods. Extensive experiments demonstrate that our model achieves superior performance among transformer-based methods in both tabular classification and regression tasks.
Related papers
- Tabular data generation with tensor contraction layers and transformers [0.35998666903987897]
We investigate the potential of using embedding representations on data generation, utilizing tensor contraction layers and transformers.
Our empirical study, conducted across multiple datasets from the OpenML CC18 suite, compares models over density estimation and Machine Learning efficiency metrics.
The main takeaway from our results is that leveraging embedding representations with the help of tensor contraction layers improves density estimation metrics, albeit maintaining competitive performance in terms of machine learning efficiency.
arXiv Detail & Related papers (2024-12-06T19:34:13Z) - TabDiff: a Mixed-type Diffusion Model for Tabular Data Generation [91.50296404732902]
We introduce TabDiff, a joint diffusion framework that models all mixed-type distributions of tabular data in one model.
Our key innovation is the development of a joint continuous-time diffusion process for numerical and categorical data.
TabDiff achieves superior average performance over existing competitive baselines, with up to $22.5%$ improvement over the state-of-the-art model on pair-wise column correlation estimations.
arXiv Detail & Related papers (2024-10-27T22:58:47Z) - Unifying Feature and Cost Aggregation with Transformers for Semantic and Visual Correspondence [51.54175067684008]
This paper introduces a Transformer-based integrative feature and cost aggregation network designed for dense matching tasks.
We first show that feature aggregation and cost aggregation exhibit distinct characteristics and reveal the potential for substantial benefits stemming from the judicious use of both aggregation processes.
Our framework is evaluated on standard benchmarks for semantic matching, and also applied to geometric matching, where we show that our approach achieves significant improvements compared to existing methods.
arXiv Detail & Related papers (2024-03-17T07:02:55Z) - Pseudo-Label Calibration Semi-supervised Multi-Modal Entity Alignment [7.147651976133246]
Multi-modal entity alignment (MMEA) aims to identify equivalent entities between two multi-modal knowledge graphs for integration.
We introduce a Pseudo-label Multimodal Entity Alignment (PCMEA) in a semi-supervised way.
We combine momentum-based contrastive learning to make full use of the labeled and unlabeled data, which improves the quality of pseudo-label and pulls aligned entities closer.
arXiv Detail & Related papers (2024-03-02T12:44:59Z) - Correlated Attention in Transformers for Multivariate Time Series [22.542109523780333]
We propose a novel correlated attention mechanism, which efficiently captures feature-wise dependencies, and can be seamlessly integrated within the encoder blocks of existing Transformers.
In particular, correlated attention operates across feature channels to compute cross-covariance matrices between queries and keys with different lag values, and selectively aggregate representations at the sub-series level.
This architecture facilitates automated discovery and representation learning of not only instantaneous but also lagged cross-correlations, while inherently capturing time series auto-correlation.
arXiv Detail & Related papers (2023-11-20T17:35:44Z) - ICAFusion: Iterative Cross-Attention Guided Feature Fusion for
Multispectral Object Detection [25.66305300362193]
A novel feature fusion framework of dual cross-attention transformers is proposed to model global feature interaction.
This framework enhances the discriminability of object features through the query-guided cross-attention mechanism.
The proposed method achieves superior performance and faster inference, making it suitable for various practical scenarios.
arXiv Detail & Related papers (2023-08-15T00:02:10Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
We propose an Adaptive Hierarchical Similarity Metric Learning method.
It considers two noise-insensitive information, textiti.e., class-wise divergence and sample-wise consistency.
Our method achieves state-of-the-art performance compared with current deep metric learning approaches.
arXiv Detail & Related papers (2021-10-29T02:12:18Z) - Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks [75.69896269357005]
Mixup is the latest data augmentation technique that linearly interpolates input examples and the corresponding labels.
In this paper, we explore how to apply mixup to natural language processing tasks.
We incorporate mixup to transformer-based pre-trained architecture, named "mixup-transformer", for a wide range of NLP tasks.
arXiv Detail & Related papers (2020-10-05T23:37:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.