SEA: Low-Resource Safety Alignment for Multimodal Large Language Models via Synthetic Embeddings
- URL: http://arxiv.org/abs/2502.12562v1
- Date: Tue, 18 Feb 2025 05:57:35 GMT
- Title: SEA: Low-Resource Safety Alignment for Multimodal Large Language Models via Synthetic Embeddings
- Authors: Weikai Lu, Hao Peng, Huiping Zhuang, Cen Chen, Ziqian Zeng,
- Abstract summary: Multimodal Large Language Models (MLLMs) have serious security vulnerabilities.<n>Existing low-resource security alignment methods, including textual alignment, have been found to struggle with the security risks posed by additional modalities.<n>We propose Synthetic Embedding augmented safety alignment (SEA), which optimize embeddings of additional modality through gradient updates.
- Score: 32.661752596399204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) have serious security vulnerabilities.While safety alignment using multimodal datasets consisting of text and data of additional modalities can effectively enhance MLLM's security, it is costly to construct these datasets. Existing low-resource security alignment methods, including textual alignment, have been found to struggle with the security risks posed by additional modalities. To address this, we propose Synthetic Embedding augmented safety Alignment (SEA), which optimizes embeddings of additional modality through gradient updates to expand textual datasets. This enables multimodal safety alignment training even when only textual data is available. Extensive experiments on image, video, and audio-based MLLMs demonstrate that SEA can synthesize a high-quality embedding on a single RTX3090 GPU within 24 seconds. SEA significantly improves the security of MLLMs when faced with threats from additional modalities. To assess the security risks introduced by video and audio, we also introduced a new benchmark called VA-SafetyBench. High attack success rates across multiple MLLMs validate its challenge. Our code and data will be available at https://github.com/ZeroNLP/SEA.
Related papers
- DREAM: Disentangling Risks to Enhance Safety Alignment in Multimodal Large Language Models [37.104276926258095]
Multimodal Large Language Models (MLLMs) pose unique safety challenges due to their integration of visual and textual data.
We introduce textbfDREAM (textittextbfDisentangling textbfRisks to textbfEnhance Safety textbfAlignment in textbfMLLMs), a novel approach that enhances safety alignment in MLLMs through supervised fine-tuning and iterative Reinforcement Learning from AI Feedback.
arXiv Detail & Related papers (2025-04-25T03:54:24Z) - Do We Really Need Curated Malicious Data for Safety Alignment in Multi-modal Large Language Models? [83.53005932513155]
Multi-modal large language models (MLLMs) have made significant progress, yet their safety alignment remains limited.
We propose finetuning MLLMs on a small set of benign instruct-following data with responses replaced by simple, clear rejection sentences.
arXiv Detail & Related papers (2025-04-14T09:03:51Z) - Can't See the Forest for the Trees: Benchmarking Multimodal Safety Awareness for Multimodal LLMs [56.440345471966666]
Multimodal Large Language Models (MLLMs) have expanded the capabilities of traditional language models by enabling interaction through both text and images.
This paper introduces MMSafeAware, the first comprehensive multimodal safety awareness benchmark designed to evaluate MLLMs across 29 safety scenarios.
MMSafeAware includes both unsafe and over-safety subsets to assess models abilities to correctly identify unsafe content and avoid over-sensitivity that can hinder helpfulness.
arXiv Detail & Related papers (2025-02-16T16:12:40Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
We propose toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs.
Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol.
Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs.
arXiv Detail & Related papers (2024-10-24T17:14:40Z) - CoCA: Regaining Safety-awareness of Multimodal Large Language Models with Constitutional Calibration [90.36429361299807]
multimodal large language models (MLLMs) have demonstrated remarkable success in engaging in conversations involving visual inputs.
The integration of visual modality has introduced a unique vulnerability: the MLLM becomes susceptible to malicious visual inputs.
We introduce a technique termed CoCA, which amplifies the safety-awareness of the MLLM by calibrating its output distribution.
arXiv Detail & Related papers (2024-09-17T17:14:41Z) - S-Eval: Towards Automated and Comprehensive Safety Evaluation for Large Language Models [46.148439517272024]
Generative large language models (LLMs) have revolutionized natural language processing with their transformative and emergent capabilities.
Recent evidence indicates that LLMs can produce harmful content that violates social norms.
We propose S-Eval, an automated Safety Evaluation framework with a newly defined comprehensive risk taxonomy.
arXiv Detail & Related papers (2024-05-23T05:34:31Z) - Towards Comprehensive Post Safety Alignment of Large Language Models via Safety Patching [74.62818936088065]
textscSafePatching is a novel framework for comprehensive PSA.
textscSafePatching achieves a more comprehensive PSA than baseline methods.
textscSafePatching demonstrates its superiority in continual PSA scenarios.
arXiv Detail & Related papers (2024-05-22T16:51:07Z) - AEGIS: Online Adaptive AI Content Safety Moderation with Ensemble of LLM Experts [0.0]
As Large Language Models (LLMs) and generative AI become more widespread, the content safety risks associated with their use also increase.
We find a notable deficiency in high-quality content safety datasets and benchmarks that comprehensively cover a wide range of critical safety areas.
To address this, we define a broad content safety risk taxonomy, comprising 13 critical risk and 9 sparse risk categories.
arXiv Detail & Related papers (2024-04-09T03:54:28Z) - Eyes Closed, Safety On: Protecting Multimodal LLMs via Image-to-Text Transformation [98.02846901473697]
We propose ECSO (Eyes Closed, Safety On), a training-free protecting approach that exploits the inherent safety awareness of MLLMs.
ECSO generates safer responses via adaptively transforming unsafe images into texts to activate the intrinsic safety mechanism of pre-aligned LLMs.
arXiv Detail & Related papers (2024-03-14T17:03:04Z) - MM-SafetyBench: A Benchmark for Safety Evaluation of Multimodal Large Language Models [41.708401515627784]
We observe that Multimodal Large Language Models (MLLMs) can be easily compromised by query-relevant images.
We introduce MM-SafetyBench, a framework designed for conducting safety-critical evaluations of MLLMs against such image-based manipulations.
Our work underscores the need for a concerted effort to strengthen and enhance the safety measures of open-source MLLMs against potential malicious exploits.
arXiv Detail & Related papers (2023-11-29T12:49:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.