CHATS: Combining Human-Aligned Optimization and Test-Time Sampling for Text-to-Image Generation
- URL: http://arxiv.org/abs/2502.12579v1
- Date: Tue, 18 Feb 2025 06:31:08 GMT
- Title: CHATS: Combining Human-Aligned Optimization and Test-Time Sampling for Text-to-Image Generation
- Authors: Minghao Fu, Guo-Hua Wang, Liangfu Cao, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang,
- Abstract summary: Key components such as the human preference alignment play a crucial role in ensuring generation quality.
We introduce CHATS (Combining Human-Aligned optimization and Test-time Sampling), a novel generative framework that separately models the preferred and dispreferred distributions.
We observe that CHATS exhibits exceptional data efficiency, achieving strong performance with only a small, high-quality funetuning dataset.
- Score: 22.139826276559724
- License:
- Abstract: Diffusion models have emerged as a dominant approach for text-to-image generation. Key components such as the human preference alignment and classifier-free guidance play a crucial role in ensuring generation quality. However, their independent application in current text-to-image models continues to face significant challenges in achieving strong text-image alignment, high generation quality, and consistency with human aesthetic standards. In this work, we for the first time, explore facilitating the collaboration of human performance alignment and test-time sampling to unlock the potential of text-to-image models. Consequently, we introduce CHATS (Combining Human-Aligned optimization and Test-time Sampling), a novel generative framework that separately models the preferred and dispreferred distributions and employs a proxy-prompt-based sampling strategy to utilize the useful information contained in both distributions. We observe that CHATS exhibits exceptional data efficiency, achieving strong performance with only a small, high-quality funetuning dataset. Extensive experiments demonstrate that CHATS surpasses traditional preference alignment methods, setting new state-of-the-art across various standard benchmarks.
Related papers
- Debiasing Vison-Language Models with Text-Only Training [15.069736314663352]
We propose a Text-Only Debiasing framework called TOD, leveraging a text-as-image training paradigm to mitigate visual biases.
To address the limitations, we propose a Text-Only Debiasing framework called TOD, leveraging a text-as-image training paradigm to mitigate visual biases.
arXiv Detail & Related papers (2024-10-12T04:34:46Z) - Multimodal Large Language Model is a Human-Aligned Annotator for Text-to-Image Generation [87.50120181861362]
VisionPrefer is a high-quality and fine-grained preference dataset that captures multiple preference aspects.
We train a reward model VP-Score over VisionPrefer to guide the training of text-to-image generative models and the preference prediction accuracy of VP-Score is comparable to human annotators.
arXiv Detail & Related papers (2024-04-23T14:53:15Z) - Text-to-Image Diffusion Models are Great Sketch-Photo Matchmakers [120.49126407479717]
This paper explores text-to-image diffusion models for Zero-Shot Sketch-based Image Retrieval (ZS-SBIR)
We highlight a pivotal discovery: the capacity of text-to-image diffusion models to seamlessly bridge the gap between sketches and photos.
arXiv Detail & Related papers (2024-03-12T00:02:03Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - Text-Conditioned Sampling Framework for Text-to-Image Generation with
Masked Generative Models [52.29800567587504]
We propose a learnable sampling model, Text-Conditioned Token Selection (TCTS), to select optimal tokens via localized supervision with text information.
TCTS improves not only the image quality but also the semantic alignment of the generated images with the given texts.
We validate the efficacy of TCTS combined with Frequency Adaptive Sampling (FAS) with various generative tasks, demonstrating that it significantly outperforms the baselines in image-text alignment and image quality.
arXiv Detail & Related papers (2023-04-04T03:52:49Z) - Lafite2: Few-shot Text-to-Image Generation [132.14211027057766]
We propose a novel method for pre-training text-to-image generation model on image-only datasets.
It considers a retrieval-then-optimization procedure to synthesize pseudo text features.
It can be beneficial to a wide range of settings, including the few-shot, semi-supervised and fully-supervised learning.
arXiv Detail & Related papers (2022-10-25T16:22:23Z) - Self-Adversarial Learning with Comparative Discrimination for Text
Generation [111.18614166615968]
We propose a novel self-adversarial learning (SAL) paradigm for improving GANs' performance in text generation.
During training, SAL rewards the generator when its currently generated sentence is found to be better than its previously generated samples.
Experiments on text generation benchmark datasets show that our proposed approach substantially improves both the quality and the diversity.
arXiv Detail & Related papers (2020-01-31T07:50:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.