G-Refer: Graph Retrieval-Augmented Large Language Model for Explainable Recommendation
- URL: http://arxiv.org/abs/2502.12586v1
- Date: Tue, 18 Feb 2025 06:42:38 GMT
- Title: G-Refer: Graph Retrieval-Augmented Large Language Model for Explainable Recommendation
- Authors: Yuhan Li, Xinni Zhang, Linhao Luo, Heng Chang, Yuxiang Ren, Irwin King, Jia Li,
- Abstract summary: We propose a framework using graph retrieval-augmented large language models (LLMs) for explainable recommendation.
G-Refer achieves superior performance compared with existing methods in both explainability and stability.
- Score: 48.23263809469786
- License:
- Abstract: Explainable recommendation has demonstrated significant advantages in informing users about the logic behind recommendations, thereby increasing system transparency, effectiveness, and trustworthiness. To provide personalized and interpretable explanations, existing works often combine the generation capabilities of large language models (LLMs) with collaborative filtering (CF) information. CF information extracted from the user-item interaction graph captures the user behaviors and preferences, which is crucial for providing informative explanations. However, due to the complexity of graph structure, effectively extracting the CF information from graphs still remains a challenge. Moreover, existing methods often struggle with the integration of extracted CF information with LLMs due to its implicit representation and the modality gap between graph structures and natural language explanations. To address these challenges, we propose G-Refer, a framework using graph retrieval-augmented large language models (LLMs) for explainable recommendation. Specifically, we first employ a hybrid graph retrieval mechanism to retrieve explicit CF signals from both structural and semantic perspectives. The retrieved CF information is explicitly formulated as human-understandable text by the proposed graph translation and accounts for the explanations generated by LLMs. To bridge the modality gap, we introduce knowledge pruning and retrieval-augmented fine-tuning to enhance the ability of LLMs to process and utilize the retrieved CF information to generate explanations. Extensive experiments show that G-Refer achieves superior performance compared with existing methods in both explainability and stability. Codes and data are available at https://github.com/Yuhan1i/G-Refer.
Related papers
- FRAG: A Flexible Modular Framework for Retrieval-Augmented Generation based on Knowledge Graphs [17.477161619378332]
We propose a novel flexible modular KG-RAG framework, termed FRAG, which synergizes the advantages of both approaches.
By using the query text instead of the Knowledge Graph, FRAG improves retrieval quality while maintaining flexibility.
arXiv Detail & Related papers (2025-01-17T05:19:14Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Filter-then-Generate: Large Language Models with Structure-Text Adapter for Knowledge Graph Completion [20.973071287301067]
Large Language Models (LLMs) present massive inherent knowledge and superior semantic comprehension capability.
Empirical evidence suggests that LLMs consistently perform worse than conventional knowledge graph completion approaches.
We propose a novel instruction-tuning-based method, namely FtG, to address these challenges.
arXiv Detail & Related papers (2024-12-12T09:22:04Z) - SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images.
We first present a simple yet well-crafted framework named name, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework.
arXiv Detail & Related papers (2024-10-28T18:10:26Z) - Simple Is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
Large Language Models (LLMs) demonstrate strong reasoning abilities but face limitations such as hallucinations and outdated knowledge.
We introduce SubgraphRAG, extending the Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) framework that retrieves subgraphs.
Our approach innovatively integrates a lightweight multilayer perceptron with a parallel triple-scoring mechanism for efficient and flexible subgraph retrieval.
arXiv Detail & Related papers (2024-10-28T04:39:32Z) - Multi-perspective Improvement of Knowledge Graph Completion with Large
Language Models [95.31941227776711]
We propose MPIKGC to compensate for the deficiency of contextualized knowledge and improve KGC by querying large language models (LLMs)
We conducted extensive evaluation of our framework based on four description-based KGC models and four datasets, for both link prediction and triplet classification tasks.
arXiv Detail & Related papers (2024-03-04T12:16:15Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
We introduce the Knowledge-Enhanced Entity Representation Learning (KERL) framework to improve the semantic understanding of entities for Conversational recommender systems.
KERL uses a knowledge graph and a pre-trained language model to improve the semantic understanding of entities.
KERL achieves state-of-the-art results in both recommendation and response generation tasks.
arXiv Detail & Related papers (2023-12-18T06:41:23Z) - Representation Learning with Large Language Models for Recommendation [33.040389989173825]
We propose a model-agnostic framework RLMRec to enhance recommenders with large language models (LLMs)empowered representation learning.
RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals.
arXiv Detail & Related papers (2023-10-24T15:51:13Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - LUKE-Graph: A Transformer-based Approach with Gated Relational Graph
Attention for Cloze-style Reading Comprehension [13.173307471333619]
We propose the LUKE-Graph, a model that builds a heterogeneous graph based on the intuitive relationships between entities in a document.
We then use the Attention reading (RGAT) to fuse the graph's reasoning information and the contextual representation encoded by the pre-trained LUKE model.
Experimental results demonstrate that the LUKE-Graph achieves state-of-the-art performance with commonsense reasoning.
arXiv Detail & Related papers (2023-03-12T14:31:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.