Score-Based Diffusion Policy Compatible with Reinforcement Learning via Optimal Transport
- URL: http://arxiv.org/abs/2502.12631v1
- Date: Tue, 18 Feb 2025 08:22:20 GMT
- Title: Score-Based Diffusion Policy Compatible with Reinforcement Learning via Optimal Transport
- Authors: Mingyang Sun, Pengxiang Ding, Weinan Zhang, Donglin Wang,
- Abstract summary: Diffusion policies have shown promise in learning complex behaviors from demonstrations.
This paper explores improving diffusion-based imitation learning models through online interactions with the environment.
We propose OTPR, a novel method that integrates diffusion policies with RL using optimal transport theory.
- Score: 45.793758222754036
- License:
- Abstract: Diffusion policies have shown promise in learning complex behaviors from demonstrations, particularly for tasks requiring precise control and long-term planning. However, they face challenges in robustness when encountering distribution shifts. This paper explores improving diffusion-based imitation learning models through online interactions with the environment. We propose OTPR (Optimal Transport-guided score-based diffusion Policy for Reinforcement learning fine-tuning), a novel method that integrates diffusion policies with RL using optimal transport theory. OTPR leverages the Q-function as a transport cost and views the policy as an optimal transport map, enabling efficient and stable fine-tuning. Moreover, we introduce masked optimal transport to guide state-action matching using expert keypoints and a compatibility-based resampling strategy to enhance training stability. Experiments on three simulation tasks demonstrate OTPR's superior performance and robustness compared to existing methods, especially in complex and sparse-reward environments. In sum, OTPR provides an effective framework for combining IL and RL, achieving versatile and reliable policy learning. The code will be released at https://github.com/Sunmmyy/OTPR.git.
Related papers
- Diffusion Policy Policy Optimization [37.04382170999901]
Diffusion Policy Optimization, DPPO, is an algorithmic framework for fine-tuning diffusion-based policies.
DPO achieves the strongest overall performance and efficiency for fine-tuning in common benchmarks.
We show that DPPO takes advantage of unique synergies between RL fine-tuning and the diffusion parameterization.
arXiv Detail & Related papers (2024-09-01T02:47:50Z) - Real-time system optimal traffic routing under uncertainties -- Can physics models boost reinforcement learning? [2.298129181817085]
Our paper presents TransRL, a novel algorithm that integrates reinforcement learning with physics models for enhanced performance, reliability, and interpretability.
By leveraging the information from physics models, TransRL consistently outperforms state-of-the-art reinforcement learning algorithms.
arXiv Detail & Related papers (2024-07-10T04:53:26Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality.
We propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO)
Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions.
We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions.
arXiv Detail & Related papers (2024-05-25T10:45:46Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
This paper proposes an RL framework that leverages an accurate and parallelizable emulation environment to reenact the conditions of a tactical network.
We evaluate our RL learning framework by training a MARLIN agent in conditions replicating a bottleneck link transition between a Satellite Communication (SATCOM) and an UHF Wide Band (UHF) radio link.
arXiv Detail & Related papers (2023-06-27T16:15:15Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
Offline reinforcement learning (RL) aims to learn an optimal policy using a previously collected static dataset.
We introduce Diffusion Q-learning (Diffusion-QL) that utilizes a conditional diffusion model to represent the policy.
We show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks.
arXiv Detail & Related papers (2022-08-12T09:54:11Z) - Off-Policy Imitation Learning from Observations [78.30794935265425]
Learning from Observations (LfO) is a practical reinforcement learning scenario from which many applications can benefit.
We propose a sample-efficient LfO approach that enables off-policy optimization in a principled manner.
Our approach is comparable with state-of-the-art locomotion in terms of both sample-efficiency and performance.
arXiv Detail & Related papers (2021-02-25T21:33:47Z) - Learning Vehicle Routing Problems using Policy Optimisation [4.093722933440819]
State-of-the-art approaches learn a policy using reinforcement learning, and the learnt policy acts as a pseudo solver.
These approaches have demonstrated good performance in some cases, but given the large search space typical of routing problem, they can converge too quickly to poor policy.
We propose entropy regularised reinforcement learning (ERRL) that supports exploration by providing more policies.
arXiv Detail & Related papers (2020-12-24T14:18:56Z) - Reinforcement Learning to Optimize the Logistics Distribution Routes of
Unmanned Aerial Vehicle [0.0]
This paper proposes an improved method to achieve path planning for UAVs in complex surroundings: multiple no-fly zones.
The results show the feasibility and efficiency of the model applying in this kind of complicated situation.
arXiv Detail & Related papers (2020-04-21T09:42:03Z) - Efficient Deep Reinforcement Learning via Adaptive Policy Transfer [50.51637231309424]
Policy Transfer Framework (PTF) is proposed to accelerate Reinforcement Learning (RL)
Our framework learns when and which source policy is the best to reuse for the target policy and when to terminate it.
Experimental results show it significantly accelerates the learning process and surpasses state-of-the-art policy transfer methods.
arXiv Detail & Related papers (2020-02-19T07:30:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.