Learning the symmetric group: large from small
- URL: http://arxiv.org/abs/2502.12717v1
- Date: Tue, 18 Feb 2025 10:28:25 GMT
- Title: Learning the symmetric group: large from small
- Authors: Max Petschack, Alexandr Garbali, Jan de Gier,
- Abstract summary: We show that a transformer neural-network trained on predicting permutations can generalize to the symmetric group $S_25$ with near 100% accuracy.
We employ identity augmentation as a key tool to manage variable word lengths, and partitioned windows for training on adjacent transpositions.
- Score: 44.99833362998488
- License:
- Abstract: Machine learning explorations can make significant inroads into solving difficult problems in pure mathematics. One advantage of this approach is that mathematical datasets do not suffer from noise, but a challenge is the amount of data required to train these models and that this data can be computationally expensive to generate. Key challenges further comprise difficulty in a posteriori interpretation of statistical models and the implementation of deep and abstract mathematical problems. We propose a method for scalable tasks, by which models trained on simpler versions of a task can then generalize to the full task. Specifically, we demonstrate that a transformer neural-network trained on predicting permutations from words formed by general transpositions in the symmetric group $S_{10}$ can generalize to the symmetric group $S_{25}$ with near 100\% accuracy. We also show that $S_{10}$ generalizes to $S_{16}$ with similar performance if we only use adjacent transpositions. We employ identity augmentation as a key tool to manage variable word lengths, and partitioned windows for training on adjacent transpositions. Finally we compare variations of the method used and discuss potential challenges with extending the method to other tasks.
Related papers
- Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - Inverse Entropic Optimal Transport Solves Semi-supervised Learning via Data Likelihood Maximization [65.8915778873691]
conditional distributions is a central problem in machine learning.
We propose a new learning paradigm that integrates both paired and unpaired data.
Our approach also connects intriguingly with inverse entropic optimal transport (OT)
arXiv Detail & Related papers (2024-10-03T16:12:59Z) - Sample-Efficient Linear Representation Learning from Non-IID Non-Isotropic Data [4.971690889257356]
We introduce an adaptation of the alternating minimization-descent scheme proposed by Collins and Nayer and Vaswani.
We show that vanilla alternating-minimization descent fails catastrophically even for iid, but mildly non-isotropic data.
Our analysis unifies and generalizes prior work, and provides a flexible framework for a wider range of applications.
arXiv Detail & Related papers (2023-08-08T17:56:20Z) - On the Sample Complexity of Representation Learning in Multi-task
Bandits with Global and Local structure [77.60508571062958]
We investigate the sample complexity of learning the optimal arm for multi-task bandit problems.
Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor)
We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(Glog(delta_G)+ Xlog(delta_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors.
arXiv Detail & Related papers (2022-11-28T08:40:12Z) - Arbitrarily Large Labelled Random Satisfiability Formulas for Machine
Learning Training [5.414308305392762]
We show how to generate correctly labeled random formulas of any desired size without having to solve the underlying decision problem.
We train existing state-of-the-art models for the task of predicting satisfiability on formulas with 10,000 variables.
We find that they do no better than random guessing 99% on the same datasets.
arXiv Detail & Related papers (2022-11-21T17:52:13Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - Efficient and robust high-dimensional sparse logistic regression via
nonlinear primal-dual hybrid gradient algorithms [0.0]
We propose an iterative algorithm that provably computes a solution to a logistic regression problem regularized by an elastic net penalty.
This result improves on the known complexity bound of $O(min(m2n,mn2)log (1/epsilon))$ for first-order optimization methods.
arXiv Detail & Related papers (2021-11-30T14:16:48Z) - Pretrained Language Models are Symbolic Mathematics Solvers too! [1.9240537487954366]
Large-scale language models such as transformers are universal and surprisingly can be trained as a sequence-to-sequence task to solve complex equations.
We present a sample efficient way of solving the symbolic tasks by first pretraining the transformer model with language translation and then fine-tuning the pretrained transformer model to solve the downstream task of symbolic mathematics.
arXiv Detail & Related papers (2021-10-07T14:37:06Z) - On the Theory of Transfer Learning: The Importance of Task Diversity [114.656572506859]
We consider $t+1$ tasks parameterized by functions of the form $f_j circ h$ in a general function class $mathcalF circ mathcalH$.
We show that for diverse training tasks the sample complexity needed to learn the shared representation across the first $t$ training tasks scales as $C(mathcalH) + t C(mathcalF)$.
arXiv Detail & Related papers (2020-06-20T20:33:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.