3D Shape-to-Image Brownian Bridge Diffusion for Brain MRI Synthesis from Cortical Surfaces
- URL: http://arxiv.org/abs/2502.12742v1
- Date: Tue, 18 Feb 2025 10:59:04 GMT
- Title: 3D Shape-to-Image Brownian Bridge Diffusion for Brain MRI Synthesis from Cortical Surfaces
- Authors: Fabian Bongratz, Yitong Li, Sama Elbaroudy, Christian Wachinger,
- Abstract summary: Cor2Vox is the first diffusion model-based method that translates continuous cortical shape priors to synthetic brain MRIs.
We demonstrate significant improvements in the geometric accuracy of reconstructed structures compared to previous voxel-based approaches.
We also highlight the capability of our approach to simulate cortical atrophy at the sub-voxel level.
- Score: 8.604681353022665
- License:
- Abstract: Despite recent advances in medical image generation, existing methods struggle to produce anatomically plausible 3D structures. In synthetic brain magnetic resonance images (MRIs), characteristic fissures are often missing, and reconstructed cortical surfaces appear scattered rather than densely convoluted. To address this issue, we introduce Cor2Vox, the first diffusion model-based method that translates continuous cortical shape priors to synthetic brain MRIs. To achieve this, we leverage a Brownian bridge process which allows for direct structured mapping between shape contours and medical images. Specifically, we adapt the concept of the Brownian bridge diffusion model to 3D and extend it to embrace various complementary shape representations. Our experiments demonstrate significant improvements in the geometric accuracy of reconstructed structures compared to previous voxel-based approaches. Moreover, Cor2Vox excels in image quality and diversity, yielding high variation in non-target structures like the skull. Finally, we highlight the capability of our approach to simulate cortical atrophy at the sub-voxel level. Our code is available at https://github.com/ai-med/Cor2Vox.
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - EndoSurf: Neural Surface Reconstruction of Deformable Tissues with
Stereo Endoscope Videos [72.59573904930419]
Reconstructing soft tissues from stereo endoscope videos is an essential prerequisite for many medical applications.
Previous methods struggle to produce high-quality geometry and appearance due to their inadequate representations of 3D scenes.
We propose a novel neural-field-based method, called EndoSurf, which effectively learns to represent a deforming surface from an RGBD sequence.
arXiv Detail & Related papers (2023-07-21T02:28:20Z) - Make-A-Volume: Leveraging Latent Diffusion Models for Cross-Modality 3D
Brain MRI Synthesis [35.45013834475523]
Cross-modality medical image synthesis is a critical topic and has the potential to facilitate numerous applications in the medical imaging field.
Most current medical image synthesis methods rely on generative adversarial networks and suffer from notorious mode collapse and unstable training.
We introduce a new paradigm for volumetric medical data synthesis by leveraging 2D backbones and present a diffusion-based framework, Make-A-Volume.
arXiv Detail & Related papers (2023-07-19T16:01:09Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
Method consists of measuring the field's spatial mode components in the image plane in the overcomplete basis of Hermite-Gaussian modes and their superpositions.
Deep neural network is used to reconstruct the object from these measurements.
arXiv Detail & Related papers (2023-04-19T15:53:09Z) - CryoFormer: Continuous Heterogeneous Cryo-EM Reconstruction using
Transformer-based Neural Representations [49.49939711956354]
Cryo-electron microscopy (cryo-EM) allows for the high-resolution reconstruction of 3D structures of proteins and other biomolecules.
It is still challenging to reconstruct the continuous motions of 3D structures from noisy and randomly oriented 2D cryo-EM images.
We propose CryoFormer, a new approach for continuous heterogeneous cryo-EM reconstruction.
arXiv Detail & Related papers (2023-03-28T18:59:17Z) - Joint Reconstruction and Parcellation of Cortical Surfaces [3.9198548406564604]
Reconstruction of cerebral cortex surfaces from brain MRI scans is instrumental for the analysis of brain morphology and the detection of cortical thinning in neurodegenerative diseases like Alzheimer's disease (AD)
In this work, we propose two options, one based on a graph classification branch and another based on a novel generic 3D reconstruction loss, to augment template-deformation algorithms.
We attain highly accurate parcellations with a Dice score of 90.2 (graph classification branch) and 90.4 (novel reconstruction loss) together with state-of-the-art surfaces.
arXiv Detail & Related papers (2022-09-19T11:45:39Z) - Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D
MRI Scans with Geometric Deep Neural Networks [3.364554138758565]
We propose Vox2Cortex, a deep learning-based algorithm that directly yields topologically correct, three-dimensional meshes of the boundaries of the cortex.
We show in extensive experiments on three brain MRI datasets that our meshes are as accurate as the ones reconstructed by state-of-the-art methods in the field.
arXiv Detail & Related papers (2022-03-17T17:06:00Z) - Robust joint registration of multiple stains and MRI for multimodal 3D
histology reconstruction: Application to the Allen human brain atlas [5.303976649864034]
We present a probabilistic model of spatial deformation that yields reconstructions for multiple histological stains.
We show that our method can accurately and robustly register multiple contrasts even in the presence of outliers.
We also provide the correspondence to MNI space, bridging the gap between two of the most used atlases in histology and MRI.
arXiv Detail & Related papers (2021-04-30T09:57:33Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - End-To-End Convolutional Neural Network for 3D Reconstruction of Knee
Bones From Bi-Planar X-Ray Images [6.645111950779666]
We present an end-to-end Convolutional Neural Network (CNN) approach for 3D reconstruction of knee bones directly from two bi-planar X-ray images.
arXiv Detail & Related papers (2020-04-02T08:37:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.