Portable Reward Tuning: Towards Reusable Fine-Tuning across Different Pretrained Models
- URL: http://arxiv.org/abs/2502.12776v1
- Date: Tue, 18 Feb 2025 11:36:33 GMT
- Title: Portable Reward Tuning: Towards Reusable Fine-Tuning across Different Pretrained Models
- Authors: Daiki Chijiwa, Taku Hasegawa, Kyosuke Nishida, Kuniko Saito, Susumu Takeuchi,
- Abstract summary: The underlying foundation model should be eventually replaced by new ones.
Existing work addresses this problem by inference-time tuning.
We propose a new fine-tuning principle, Portable Reward Tuning.
- Score: 16.005066901515512
- License:
- Abstract: While foundation models have been exploited for various expert tasks through fine-tuning, any foundation model will become outdated due to its old knowledge or limited capability. Thus the underlying foundation model should be eventually replaced by new ones, which leads to repeated cost of fine-tuning these new models. Existing work addresses this problem by inference-time tuning, i.e., modifying the output probabilities from the new foundation model with the outputs from the old foundation model and its fine-tuned model, which involves an additional overhead in inference by the latter two models. In this paper, we propose a new fine-tuning principle, Portable Reward Tuning (PRT), that reduces the inference overhead by its nature, based on the reformulation of fine-tuning as the reward maximization. Specifically, instead of fine-tuning parameters of the foundation models, PRT trains the reward model explicitly through the same loss function as in fine-tuning. During inference, the reward model can be used with any foundation model (with the same set of vocabularies or labels) through the formulation of reward maximization. Experimental results, covering both vision and language models, demonstrate that the PRT-trained model can achieve comparable accuracy to the existing work of inference-time tuning, with less inference cost.
Related papers
- Rethinking Bradley-Terry Models in Preference-Based Reward Modeling: Foundations, Theory, and Alternatives [14.401557416713315]
We revisit the foundations of using Bradley-Terry (BT) models in reward modeling.
We argue that the BT model is not a necessary choice from the perspective of downstream optimization.
We propose a simple and straightforward upper-bound algorithm, compatible with off-the-shelf binary classifiers.
arXiv Detail & Related papers (2024-11-07T18:57:03Z) - Meta-Learning Adaptable Foundation Models [37.458141335750696]
We introduce a meta-learning framework infused with PEFT in this intermediate retraining stage to learn a model that can be easily adapted to unseen tasks.
In this setting, we demonstrate the suboptimality of standard retraining for finding an adaptable set of parameters.
We then apply these theoretical insights to retraining the RoBERTa model to predict the continuation of conversations within the ConvAI2 dataset.
arXiv Detail & Related papers (2024-10-29T17:24:18Z) - Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think [53.2706196341054]
We show that the perceived inefficiency was caused by a flaw in the inference pipeline that has so far gone unnoticed.
We perform end-to-end fine-tuning on top of the single-step model with task-specific losses and get a deterministic model that outperforms all other diffusion-based depth and normal estimation models.
arXiv Detail & Related papers (2024-09-17T16:58:52Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Aggregate Representation Measure for Predictive Model Reusability [2.93774265594295]
We propose a predictive quantifier to estimate the retraining cost of a trained model in distribution shifts.
The proposed Aggregated Representation Measure (ARM) quantifies the change in the model's representation from the old to new data distribution.
arXiv Detail & Related papers (2024-05-15T14:14:34Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
This paper introduces ZhiJian, a comprehensive and user-friendly toolbox for model reuse, utilizing the PyTorch backend.
ZhiJian presents a novel paradigm that unifies diverse perspectives on model reuse, encompassing target architecture construction with PTM, tuning target model with PTM, and PTM-based inference.
arXiv Detail & Related papers (2023-08-17T19:12:13Z) - RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment [32.752633250862694]
Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data.
We introduce a new framework, Reward rAnked FineTuning, designed to align generative models effectively.
arXiv Detail & Related papers (2023-04-13T18:22:40Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time [69.7693300927423]
We show that averaging the weights of multiple models fine-tuned with different hyper parameter configurations improves accuracy and robustness.
We show that the model soup approach extends to multiple image classification and natural language processing tasks.
arXiv Detail & Related papers (2022-03-10T17:03:49Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.