Learning Counterfactually Fair Models via Improved Generation with Neural Causal Models
- URL: http://arxiv.org/abs/2502.12796v1
- Date: Tue, 18 Feb 2025 11:59:03 GMT
- Title: Learning Counterfactually Fair Models via Improved Generation with Neural Causal Models
- Authors: Krishn Vishwas Kher, Aditya Varun V, Shantanu Das, SakethaNath Jagarlapudi,
- Abstract summary: One of the main concerns while deploying machine learning models in real-world applications is fairness.
Existing methodologies for enforcing counterfactual fairness seem to have two limitations.
We propose employing Neural Causal Models for generating the counterfactual samples.
We also propose a new MMD-based regularizer term that explicitly enforces the counterfactual fairness conditions into the base model while training.
- Score: 0.0
- License:
- Abstract: One of the main concerns while deploying machine learning models in real-world applications is fairness. Counterfactual fairness has emerged as an intuitive and natural definition of fairness. However, existing methodologies for enforcing counterfactual fairness seem to have two limitations: (i) generating counterfactual samples faithful to the underlying causal graph, and (ii) as we argue in this paper, existing regularizers are mere proxies and do not directly enforce the exact definition of counterfactual fairness. In this work, our aim is to mitigate both issues. Firstly, we propose employing Neural Causal Models (NCMs) for generating the counterfactual samples. For implementing the abduction step in NCMs, the posteriors of the exogenous variables need to be estimated given a counterfactual query, as they are not readily available. As a consequence, $\mathcal{L}_3$ consistency with respect to the underlying causal graph cannot be guaranteed in practice due to the estimation errors involved. To mitigate this issue, we propose a novel kernel least squares loss term that enforces the $\mathcal{L}_3$ constraints explicitly. Thus, we obtain an improved counterfactual generation suitable for the counterfactual fairness task. Secondly, we propose a new MMD-based regularizer term that explicitly enforces the counterfactual fairness conditions into the base model while training. We show an improved trade-off between counterfactual fairness and generalization over existing baselines on synthetic and benchmark datasets.
Related papers
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Causal Context Connects Counterfactual Fairness to Robust Prediction and
Group Fairness [15.83823345486604]
We motivatefactual fairness by showing that there is not a fundamental trade-off between fairness and accuracy.
Counterfactual fairness can sometimes be tested by measuring relatively simple group fairness metrics.
arXiv Detail & Related papers (2023-10-30T16:07:57Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Fairness Reprogramming [42.65700878967251]
We propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique.
Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger.
We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models.
arXiv Detail & Related papers (2022-09-21T09:37:00Z) - FETA: Fairness Enforced Verifying, Training, and Predicting Algorithms
for Neural Networks [9.967054059014691]
We study the problem of verifying, training, and guaranteeing individual fairness of neural network models.
A popular approach for enforcing fairness is to translate a fairness notion into constraints over the parameters of the model.
We develop a counterexample-guided post-processing technique to provably enforce fairness constraints at prediction time.
arXiv Detail & Related papers (2022-06-01T15:06:11Z) - Domain Adaptation meets Individual Fairness. And they get along [48.95808607591299]
We show that algorithmic fairness interventions can help machine learning models overcome distribution shifts.
In particular, we show that enforcing suitable notions of individual fairness (IF) can improve the out-of-distribution accuracy of ML models.
arXiv Detail & Related papers (2022-05-01T16:19:55Z) - Learning Fair Node Representations with Graph Counterfactual Fairness [56.32231787113689]
We propose graph counterfactual fairness, which considers the biases led by the above facts.
We generate counterfactuals corresponding to perturbations on each node's and their neighbors' sensitive attributes.
Our framework outperforms the state-of-the-art baselines in graph counterfactual fairness.
arXiv Detail & Related papers (2022-01-10T21:43:44Z) - Does enforcing fairness mitigate biases caused by subpopulation shift? [45.51706479763718]
We study whether enforcing algorithmic fairness during training improves the performance of the trained model in the emphtarget domain
We derive necessary and sufficient conditions under which enforcing algorithmic fairness leads to the Bayes model in the target domain.
arXiv Detail & Related papers (2020-11-06T03:22:52Z) - Convex Fairness Constrained Model Using Causal Effect Estimators [6.414055487487486]
We devise novel models, called FairCEEs, which remove discrimination while keeping explanatory bias.
We provide an efficient algorithm for solving FairCEEs in regression and binary classification tasks.
arXiv Detail & Related papers (2020-02-16T03:40:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.