Towards Equitable AI: Detecting Bias in Using Large Language Models for Marketing
- URL: http://arxiv.org/abs/2502.12838v1
- Date: Tue, 18 Feb 2025 13:11:16 GMT
- Title: Towards Equitable AI: Detecting Bias in Using Large Language Models for Marketing
- Authors: Berk Yilmaz, Huthaifa I. Ashqar,
- Abstract summary: This study examined bias in finance-related marketing slogans generated by large language models (LLMs)
Women, younger individuals, low-income earners, and those with lower education levels receive more distinct messaging compared to older, higher-income, and highly educated individuals.
- Score: 1.3673890873313352
- License:
- Abstract: The recent advances in large language models (LLMs) have revolutionized industries such as finance, marketing, and customer service by enabling sophisticated natural language processing tasks. However, the broad adoption of LLMs brings significant challenges, particularly in the form of social biases that can be embedded within their outputs. Biases related to gender, age, and other sensitive attributes can lead to unfair treatment, raising ethical concerns and risking both company reputation and customer trust. This study examined bias in finance-related marketing slogans generated by LLMs (i.e., ChatGPT) by prompting tailored ads targeting five demographic categories: gender, marital status, age, income level, and education level. A total of 1,700 slogans were generated for 17 unique demographic groups, and key terms were categorized into four thematic groups: empowerment, financial, benefits and features, and personalization. Bias was systematically assessed using relative bias calculations and statistically tested with the Kolmogorov-Smirnov (KS) test against general slogans generated for any individual. Results revealed that marketing slogans are not neutral; rather, they emphasize different themes based on demographic factors. Women, younger individuals, low-income earners, and those with lower education levels receive more distinct messaging compared to older, higher-income, and highly educated individuals. This underscores the need to consider demographic-based biases in AI-generated marketing strategies and their broader societal implications. The findings of this study provide a roadmap for developing more equitable AI systems, highlighting the need for ongoing bias detection and mitigation efforts in LLMs.
Related papers
- Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
We center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias.
Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning.
We conclude with recommendations tailored to DPO and broader alignment practices.
arXiv Detail & Related papers (2024-11-06T06:50:50Z) - Revealing and Reducing Gender Biases in Vision and Language Assistants (VLAs) [82.57490175399693]
We study gender bias in 22 popular image-to-text vision-language assistants (VLAs)
Our results show that VLAs replicate human biases likely present in the data, such as real-world occupational imbalances.
To eliminate the gender bias in these models, we find that finetuning-based debiasing methods achieve the best tradeoff between debiasing and retaining performance on downstream tasks.
arXiv Detail & Related papers (2024-10-25T05:59:44Z) - Gender Biases in LLMs: Higher intelligence in LLM does not necessarily solve gender bias and stereotyping [0.0]
Large Language Models (LLMs) are finding applications in all aspects of life, but their susceptibility to biases, particularly gender stereotyping, raises ethical concerns.
This study introduces a novel methodology, a persona-based framework, and a unisex name methodology to investigate whether higher-intelligence LLMs reduce such biases.
arXiv Detail & Related papers (2024-09-30T05:22:54Z) - GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
Large language models (LLMs) have exhibited remarkable capabilities in natural language generation, but have also been observed to magnify societal biases.
GenderCARE is a comprehensive framework that encompasses innovative Criteria, bias Assessment, Reduction techniques, and Evaluation metrics.
arXiv Detail & Related papers (2024-08-22T15:35:46Z) - JobFair: A Framework for Benchmarking Gender Hiring Bias in Large Language Models [12.12628747941818]
This paper presents a novel framework for benchmarking hierarchical gender hiring bias in Large Language Models (LLMs) for resume scoring.
We introduce a new construct grounded in labour economics, legal principles, and critiques of current bias benchmarks.
We analyze gender hiring biases in ten state-of-the-art LLMs.
arXiv Detail & Related papers (2024-06-17T09:15:57Z) - Understanding Intrinsic Socioeconomic Biases in Large Language Models [4.276697874428501]
We introduce a novel dataset of one million English sentences to quantify socioeconomic biases.
Our findings reveal pervasive socioeconomic biases in both established models like GPT-2 and state-of-the-art models like Llama 2 and Falcon.
arXiv Detail & Related papers (2024-05-28T23:54:44Z) - Sociodemographic Prompting is Not Yet an Effective Approach for Simulating Subjective Judgments with LLMs [13.744746481528711]
Large Language Models (LLMs) are widely used to simulate human responses across diverse contexts.
We evaluate nine popular LLMs on their ability to understand demographic differences in two subjective judgment tasks: politeness and offensiveness.
We find that in zero-shot settings, most models' predictions for both tasks align more closely with labels from White participants than those from Asian or Black participants.
arXiv Detail & Related papers (2023-11-16T10:02:24Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
This paper investigates bias along less-studied but still consequential, dimensions, such as age and beauty.
We ask whether LLMs hold wide-reaching biases of positive or negative sentiment for specific social groups similar to the "what is beautiful is good" bias found in people in experimental psychology.
arXiv Detail & Related papers (2023-09-16T07:07:04Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
Large-scale pretrained language models (LMs) can be potentially dangerous in manifesting undesirable representational biases.
We propose steps towards mitigating social biases during text generation.
Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information.
arXiv Detail & Related papers (2021-06-24T17:52:43Z) - Towards Controllable Biases in Language Generation [87.89632038677912]
We develop a method to induce societal biases in generated text when input prompts contain mentions of specific demographic groups.
We analyze two scenarios: 1) inducing negative biases for one demographic and positive biases for another demographic, and 2) equalizing biases between demographics.
arXiv Detail & Related papers (2020-05-01T08:25:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.