Probabilistic neural operators for functional uncertainty quantification
- URL: http://arxiv.org/abs/2502.12902v1
- Date: Tue, 18 Feb 2025 14:42:11 GMT
- Title: Probabilistic neural operators for functional uncertainty quantification
- Authors: Christopher Bülte, Philipp Scholl, Gitta Kutyniok,
- Abstract summary: We introduce the probabilistic neural operator (PNO), a framework for learning probability distributions over the output function space of neural operators.
PNO extends neural operators with generative modeling based on strictly proper scoring rules, integrating uncertainty information directly into the training process.
- Score: 14.08907045605149
- License:
- Abstract: Neural operators aim to approximate the solution operator of a system of differential equations purely from data. They have shown immense success in modeling complex dynamical systems across various domains. However, the occurrence of uncertainties inherent in both model and data has so far rarely been taken into account\textemdash{}a critical limitation in complex, chaotic systems such as weather forecasting. In this paper, we introduce the probabilistic neural operator (PNO), a framework for learning probability distributions over the output function space of neural operators. PNO extends neural operators with generative modeling based on strictly proper scoring rules, integrating uncertainty information directly into the training process. We provide a theoretical justification for the approach and demonstrate improved performance in quantifying uncertainty across different domains and with respect to different baselines. Furthermore, PNO requires minimal adjustment to existing architectures, shows improved performance for most probabilistic prediction tasks, and leads to well-calibrated predictive distributions and adequate uncertainty representations even for long dynamical trajectories. Implementing our approach into large-scale models for physical applications can lead to improvements in corresponding uncertainty quantification and extreme event identification, ultimately leading to a deeper understanding of the prediction of such surrogate models.
Related papers
- Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
We introduce LUNO, a novel framework for approximate Bayesian uncertainty quantification in trained neural operators.
Our approach leverages model linearization to push (Gaussian) weight-space uncertainty forward to the neural operator's predictions.
We show that this can be interpreted as a probabilistic version of the concept of currying from functional programming, yielding a function-valued (Gaussian) random process belief.
arXiv Detail & Related papers (2024-06-07T16:43:54Z) - Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems [49.2319247825857]
We show that diffusion-based generative models exhibit many properties favourable for neural operators.
We propose to train a single model adaptable to multiple tasks, by alternating between the tasks during training.
arXiv Detail & Related papers (2024-05-11T21:23:55Z) - Neural Operator induced Gaussian Process framework for probabilistic solution of parametric partial differential equations [8.528817025440746]
We propose a novel Neural Operator-induced Gaussian Process (NOGaP) for partial differential equations.
The proposed framework leads to improved prediction accuracy and offers a quantifiable measure of uncertainty.
The results demonstrate superior accuracy and expected uncertainty characteristics, suggesting the promising potential of NOGaP.
arXiv Detail & Related papers (2024-04-24T03:16:48Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Probabilistic computation and uncertainty quantification with emerging
covariance [11.79594512851008]
Building robust, interpretable, and secure AI system requires quantifying and representing uncertainty under a probabilistic perspective.
Probability computation presents significant challenges for most conventional artificial neural network.
arXiv Detail & Related papers (2023-05-30T17:55:29Z) - Adaptive Conditional Quantile Neural Processes [9.066817971329899]
Conditional Quantile Neural Processes (CQNPs) are a new member of the neural processes family.
We introduce an extension of quantile regression where the model learns to focus on estimating informative quantiles.
Experiments with real and synthetic datasets demonstrate substantial improvements in predictive performance.
arXiv Detail & Related papers (2023-05-30T06:19:19Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Accurate and Reliable Forecasting using Stochastic Differential
Equations [48.21369419647511]
It is critical yet challenging for deep learning models to properly characterize uncertainty that is pervasive in real-world environments.
This paper develops SDE-HNN to characterize the interaction between the predictive mean and variance of HNNs for accurate and reliable regression.
Experiments on the challenging datasets show that our method significantly outperforms the state-of-the-art baselines in terms of both predictive performance and uncertainty quantification.
arXiv Detail & Related papers (2021-03-28T04:18:11Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.