LAMD: Context-driven Android Malware Detection and Classification with LLMs
- URL: http://arxiv.org/abs/2502.13055v1
- Date: Tue, 18 Feb 2025 17:01:37 GMT
- Title: LAMD: Context-driven Android Malware Detection and Classification with LLMs
- Authors: Xingzhi Qian, Xinran Zheng, Yiling He, Shuo Yang, Lorenzo Cavallaro,
- Abstract summary: Large Language Models (LLMs) offer a promising alternative with their zero-shot inference and reasoning capabilities.
We propose LAMD, a practical context-driven framework to enable LLM-based Android malware detection.
- Score: 8.582859303611881
- License:
- Abstract: The rapid growth of mobile applications has escalated Android malware threats. Although there are numerous detection methods, they often struggle with evolving attacks, dataset biases, and limited explainability. Large Language Models (LLMs) offer a promising alternative with their zero-shot inference and reasoning capabilities. However, applying LLMs to Android malware detection presents two key challenges: (1)the extensive support code in Android applications, often spanning thousands of classes, exceeds LLMs' context limits and obscures malicious behavior within benign functionality; (2)the structural complexity and interdependencies of Android applications surpass LLMs' sequence-based reasoning, fragmenting code analysis and hindering malicious intent inference. To address these challenges, we propose LAMD, a practical context-driven framework to enable LLM-based Android malware detection. LAMD integrates key context extraction to isolate security-critical code regions and construct program structures, then applies tier-wise code reasoning to analyze application behavior progressively, from low-level instructions to high-level semantics, providing final prediction and explanation. A well-designed factual consistency verification mechanism is equipped to mitigate LLM hallucinations from the first tier. Evaluation in real-world settings demonstrates LAMD's effectiveness over conventional detectors, establishing a feasible basis for LLM-driven malware analysis in dynamic threat landscapes.
Related papers
- Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
We develop an adversarial reasoning approach to automatic jailbreaking via test-time computation.
Our approach introduces a new paradigm in understanding LLM vulnerabilities, laying the foundation for the development of more robust and trustworthy AI systems.
arXiv Detail & Related papers (2025-02-03T18:59:01Z) - What You See Is Not Always What You Get: An Empirical Study of Code Comprehension by Large Language Models [0.5735035463793009]
We investigate the vulnerability of large language models (LLMs) to imperceptible attacks, where hidden character manipulation in source code misleads LLMs' behaviour while remaining undetectable to human reviewers.
These attacks include coding reordering, invisible coding characters, code deletions, and code homoglyphs.
Our findings confirm the susceptibility of LLMs to imperceptible coding character attacks, while different LLMs present different negative correlations between perturbation magnitude and performance.
arXiv Detail & Related papers (2024-12-11T04:52:41Z) - Exploring LLMs for Malware Detection: Review, Framework Design, and Countermeasure Approaches [0.24578723416255752]
The rising use of Large Language Models to create and disseminate malware poses a significant cybersecurity challenge.
This paper provides a comprehensive overview of LLMs and their role in malware detection from diverse sources.
We examine five specific applications of LLMs: Malware honeypots, identification of text-based threats, code analysis for detecting malicious intent, trend analysis of malware, and detection of non-standard disguised malware.
arXiv Detail & Related papers (2024-09-11T19:33:44Z) - Harnessing Large Language Models for Software Vulnerability Detection: A Comprehensive Benchmarking Study [1.03590082373586]
We propose using large language models (LLMs) to assist in finding vulnerabilities in source code.
The aim is to test multiple state-of-the-art LLMs and identify the best prompting strategies.
We find that LLMs can pinpoint many more issues than traditional static analysis tools, outperforming traditional tools in terms of recall and F1 scores.
arXiv Detail & Related papers (2024-05-24T14:59:19Z) - Transfer Learning in Pre-Trained Large Language Models for Malware Detection Based on System Calls [3.5698678013121334]
This work presents a novel framework leveraging large language models (LLMs) to classify malware based on system call data.
Experiments with a dataset of over 1TB of system calls demonstrate that models with larger context sizes, such as BigBird and Longformer, achieve superior accuracy and F1-Score of approximately 0.86.
This approach shows significant potential for real-time detection in high-stakes environments, offering a robust solution to evolving cyber threats.
arXiv Detail & Related papers (2024-05-15T13:19:43Z) - Understanding the Weakness of Large Language Model Agents within a
Complex Android Environment [21.278266207772756]
Large language models (LLMs) have empowered intelligent agents to execute intricate tasks within domain-specific software such as browsers and games.
LLMs face three primary challenges when applied to general-purpose software systems like operating systems.
These challenges motivate AndroidArena, an environment and benchmark designed to evaluate LLM agents on a modern operating system.
arXiv Detail & Related papers (2024-02-09T18:19:25Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.
Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.
We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z) - Evaluating the Instruction-Following Robustness of Large Language Models
to Prompt Injection [70.28425745910711]
Large Language Models (LLMs) have demonstrated exceptional proficiency in instruction-following.
This capability brings with it the risk of prompt injection attacks.
We evaluate the robustness of instruction-following LLMs against such attacks.
arXiv Detail & Related papers (2023-08-17T06:21:50Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
Large language models (LLMs) present significant safety and ethical risks if exploited by malicious users.
Recent works have proposed algorithms to detect LLM-generated text and protect LLMs.
We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation.
arXiv Detail & Related papers (2023-05-31T10:08:37Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.