Pretrained Image-Text Models are Secretly Video Captioners
- URL: http://arxiv.org/abs/2502.13363v1
- Date: Wed, 19 Feb 2025 01:53:03 GMT
- Title: Pretrained Image-Text Models are Secretly Video Captioners
- Authors: Chunhui Zhang, Yiren Jian, Zhongyu Ouyang, Soroush Vosoughi,
- Abstract summary: We find that an image-based model can be repurposed to outperform several specialised video captioning systems.
Our adapted model demonstrates top tier performance on major benchmarks, ranking 2nd on MSRVTT and MSVD, and 3rd on VATEX.
From a resource optimization perspective, this video captioning study focuses on three fundamental factors: optimizing model scale, maximizing data efficiency, and incorporating reinforcement learning.
- Score: 38.66202065611397
- License:
- Abstract: Developing video captioning models is computationally expensive. The dynamic nature of video also complicates the design of multimodal models that can effectively caption these sequences. However, we find that by using minimal computational resources and without complex modifications to address video dynamics, an image-based model can be repurposed to outperform several specialised video captioning systems. Our adapted model demonstrates top tier performance on major benchmarks, ranking 2nd on MSRVTT and MSVD, and 3rd on VATEX. We transform it into a competitive video captioner by post training a typical image captioning model BLIP2 with only 6,000 video text pairs and simply concatenating frames (significantly fewer data than other methods), which use 2.5 to 144 million pairs. From a resource optimization perspective, this video captioning study focuses on three fundamental factors: optimizing model scale, maximizing data efficiency, and incorporating reinforcement learning. This extensive study demonstrates that a lightweight, image based adaptation strategy can rival state-of-the-art video captioning systems, offering a practical solution for low-resource scenarios.
Related papers
- Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - Distilling Vision-Language Models on Millions of Videos [62.92789440875999]
We fine-tune a video-language model from a strong image-language baseline with synthesized instructional data.
The resulting video model by video-instruction-tuning (VIIT) is then used to auto-label millions of videos to generate high-quality captions.
As a side product, we generate the largest video caption dataset to date.
arXiv Detail & Related papers (2024-01-11T18:59:53Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
We present Stable Video Diffusion - a latent video diffusion model for high-resolution, state-of-the-art text-to-video and image-to-video generation.
We identify and evaluate three different stages for successful training of video LDMs: text-to-image pretraining, video pretraining, and high-quality video finetuning.
arXiv Detail & Related papers (2023-11-25T22:28:38Z) - Mug-STAN: Adapting Image-Language Pretrained Models for General Video
Understanding [47.97650346560239]
We propose Spatial-Temporal Auxiliary Network with Mutual-guided alignment module (Mug-STAN) to extend image-text model to diverse video tasks and video-text data.
Mug-STAN significantly improves adaptation of language-image pretrained models such as CLIP and CoCa at both video-text post-pretraining and finetuning stages.
arXiv Detail & Related papers (2023-11-25T17:01:38Z) - VLAB: Enhancing Video Language Pre-training by Feature Adapting and
Blending [78.1399386935455]
Large-scale image-text contrastive pre-training models, such as CLIP, have been demonstrated to effectively learn high-quality multimodal representations.
We propose a novel video-text pre-training method dubbed VLAB: Video Language pre-training by feature generativearity and Blending.
VLAB transfers CLIP representations to video pre-training tasks and develops unified video multimodal models for a wide range of video-text tasks.
arXiv Detail & Related papers (2023-05-22T15:54:22Z) - LiteVL: Efficient Video-Language Learning with Enhanced Spatial-Temporal
Modeling [48.283659682112926]
We propose LiteVL, which adapts a pre-trained image-language model BLIP into a video-text model directly on downstream tasks.
We also propose a non-parametric pooling mechanism to adaptively reweight the fine-grained video embedding conditioned on the text.
arXiv Detail & Related papers (2022-10-21T13:03:49Z) - Expanding Language-Image Pretrained Models for General Video Recognition [136.0948049010682]
Contrastive language-image pretraining has shown great success in learning visual-textual joint representation from web-scale data.
We present a simple yet effective approach that adapts the pretrained language-image models to video recognition directly.
Our approach surpasses the current state-of-the-art methods by +7.6% and +14.9% in terms of top-1 accuracy under two popular protocols.
arXiv Detail & Related papers (2022-08-04T17:59:54Z) - Towards Fast Adaptation of Pretrained Contrastive Models for
Multi-channel Video-Language Retrieval [70.30052749168013]
Multi-channel video-language retrieval require models to understand information from different channels.
contrastive multimodal models are shown to be highly effective at aligning entities in images/videos and text.
There is not a clear way to quickly adapt these two lines to multi-channel video-language retrieval with limited data and resources.
arXiv Detail & Related papers (2022-06-05T01:43:52Z) - CLIP4Caption: CLIP for Video Caption [9.470254059503862]
We propose a CLIP4Caption framework that improves video captioning based on a CLIP-enhanced video-text matching network (VTM)
This framework is taking full advantage of the information from both vision and language and enforcing the model to learn strongly text-correlated video features for text generation.
arXiv Detail & Related papers (2021-10-13T10:17:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.