Generative Predictive Control: Flow Matching Policies for Dynamic and Difficult-to-Demonstrate Tasks
- URL: http://arxiv.org/abs/2502.13406v1
- Date: Wed, 19 Feb 2025 03:33:01 GMT
- Title: Generative Predictive Control: Flow Matching Policies for Dynamic and Difficult-to-Demonstrate Tasks
- Authors: Vince Kurtz, Joel W. Burdick,
- Abstract summary: We introduce generative predictive control, a supervised learning framework for tasks with fast dynamics.
We show how trained flow-matching policies can be warm-started at run-time, maintaining temporal consistency and enabling fast feedback rates.
- Score: 11.780987653813792
- License:
- Abstract: Generative control policies have recently unlocked major progress in robotics. These methods produce action sequences via diffusion or flow matching, with training data provided by demonstrations. But despite enjoying considerable success on difficult manipulation problems, generative policies come with two key limitations. First, behavior cloning requires expert demonstrations, which can be time-consuming and expensive to obtain. Second, existing methods are limited to relatively slow, quasi-static tasks. In this paper, we leverage a tight connection between sampling-based predictive control and generative modeling to address each of these issues. In particular, we introduce generative predictive control, a supervised learning framework for tasks with fast dynamics that are easy to simulate but difficult to demonstrate. We then show how trained flow-matching policies can be warm-started at run-time, maintaining temporal consistency and enabling fast feedback rates. We believe that generative predictive control offers a complementary approach to existing behavior cloning methods, and hope that it paves the way toward generalist policies that extend beyond quasi-static demonstration-oriented tasks.
Related papers
- IMLE Policy: Fast and Sample Efficient Visuomotor Policy Learning via Implicit Maximum Likelihood Estimation [3.7584322469996896]
IMLE Policy is a novel behaviour cloning approach based on Implicit Maximum Likelihood Estimation (IMLE)
It excels in low-data regimes, effectively learning from minimal demonstrations and requiring 38% less data on average to match the performance of baseline methods in learning complex multi-modal behaviours.
We validate our approach across diverse manipulation tasks in simulated and real-world environments, showcasing its ability to capture complex behaviours under data constraints.
arXiv Detail & Related papers (2025-02-17T23:22:49Z) - Learning Diffusion Policies from Demonstrations For Compliant Contact-rich Manipulation [5.1245307851495]
This paper introduces Diffusion Policies For Compliant Manipulation (DIPCOM), a novel diffusion-based framework for compliant control tasks.
By leveraging generative diffusion models, we develop a policy that predicts Cartesian end-effector poses and adjusts arm stiffness to maintain the necessary force.
Our approach enhances force control through multimodal distribution modeling, improves the integration of diffusion policies in compliance control, and extends our previous work by demonstrating its effectiveness in real-world tasks.
arXiv Detail & Related papers (2024-10-25T00:56:15Z) - Guided Reinforcement Learning for Robust Multi-Contact Loco-Manipulation [12.377289165111028]
Reinforcement learning (RL) often necessitates a meticulous Markov Decision Process (MDP) design tailored to each task.
This work proposes a systematic approach to behavior synthesis and control for multi-contact loco-manipulation tasks.
We define a task-independent MDP to train RL policies using only a single demonstration per task generated from a model-based trajectory.
arXiv Detail & Related papers (2024-10-17T17:46:27Z) - Single-Shot Learning of Stable Dynamical Systems for Long-Horizon Manipulation Tasks [48.54757719504994]
This paper focuses on improving task success rates while reducing the amount of training data needed.
Our approach introduces a novel method that segments long-horizon demonstrations into discrete steps defined by waypoints and subgoals.
We validate our approach through both simulation and real-world experiments, demonstrating effective transfer from simulation to physical robotic platforms.
arXiv Detail & Related papers (2024-10-01T19:49:56Z) - BiKC: Keypose-Conditioned Consistency Policy for Bimanual Robotic Manipulation [48.08416841005715]
We introduce a novel keypose-conditioned consistency policy tailored for bimanual manipulation.
It is a hierarchical imitation learning framework that consists of a high-level keypose predictor and a low-level trajectory generator.
Simulated and real-world experimental results demonstrate that the proposed approach surpasses baseline methods in terms of success rate and operational efficiency.
arXiv Detail & Related papers (2024-06-14T14:49:12Z) - Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
We consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set.
We propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills.
arXiv Detail & Related papers (2023-06-13T17:24:37Z) - Chain-of-Thought Predictive Control [32.30974063877643]
We study generalizable policy learning from demonstrations for complex low-level control.
We propose a novel hierarchical imitation learning method that utilizes sub-optimal demos.
arXiv Detail & Related papers (2023-04-03T07:59:13Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
offline reinforcement learning aims to train a policy on a pre-recorded and fixed dataset without any additional environment interactions.
We build upon recent works on learning policies in latent action spaces and use a special form of Normalizing Flows for constructing a generative model.
We evaluate our method on various locomotion and navigation tasks, demonstrating that our approach outperforms recently proposed algorithms.
arXiv Detail & Related papers (2022-11-20T21:57:10Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
We build a data collection system tailored to 6-DoF manipulation settings.
We develop an algorithm to train the policy iteratively on new data collected by the system.
We demonstrate that agents trained on data collected by our intervention-based system and algorithm outperform agents trained on an equivalent number of samples collected by non-interventional demonstrators.
arXiv Detail & Related papers (2020-12-12T05:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.