Smoothed Normalization for Efficient Distributed Private Optimization
- URL: http://arxiv.org/abs/2502.13482v1
- Date: Wed, 19 Feb 2025 07:10:32 GMT
- Title: Smoothed Normalization for Efficient Distributed Private Optimization
- Authors: Egor Shulgin, Sarit Khirirat, Peter Richtárik,
- Abstract summary: Federated learning enables machine learning models with privacy of participants.
There is no differentially private distributed method for training, non-feedback problems.
We introduce a new distributed algorithm $alpha$-$sf NormEC$ with provable convergence guarantees.
- Score: 54.197255548244705
- License:
- Abstract: Federated learning enables training machine learning models while preserving the privacy of participants. Surprisingly, there is no differentially private distributed method for smooth, non-convex optimization problems. The reason is that standard privacy techniques require bounding the participants' contributions, usually enforced via $\textit{clipping}$ of the updates. Existing literature typically ignores the effect of clipping by assuming the boundedness of gradient norms or analyzes distributed algorithms with clipping but ignores DP constraints. In this work, we study an alternative approach via $\textit{smoothed normalization}$ of the updates motivated by its favorable performance in the single-node setting. By integrating smoothed normalization with an error-feedback mechanism, we design a new distributed algorithm $\alpha$-$\sf NormEC$. We prove that our method achieves a superior convergence rate over prior works. By extending $\alpha$-$\sf NormEC$ to the DP setting, we obtain the first differentially private distributed optimization algorithm with provable convergence guarantees. Finally, our empirical results from neural network training indicate robust convergence of $\alpha$-$\sf NormEC$ across different parameter settings.
Related papers
- Distributed Extra-gradient with Optimal Complexity and Communication
Guarantees [60.571030754252824]
We consider monotone variational inequality (VI) problems in multi-GPU settings where multiple processors/workers/clients have access to local dual vectors.
Extra-gradient, which is a de facto algorithm for monotone VI problems, has not been designed to be communication-efficient.
We propose a quantized generalized extra-gradient (Q-GenX), which is an unbiased and adaptive compression method tailored to solve VIs.
arXiv Detail & Related papers (2023-08-17T21:15:04Z) - Differentially Private Learning with Per-Sample Adaptive Clipping [8.401653565794353]
We propose a Differentially Private Per-Sample Adaptive Clipping (DP-PSAC) algorithm based on a non-monotonic adaptive weight function.
We show that DP-PSAC outperforms or matches the state-of-the-art methods on multiple main-stream vision and language tasks.
arXiv Detail & Related papers (2022-12-01T07:26:49Z) - Differentially Private Online-to-Batch for Smooth Losses [38.23708749658059]
We develop a new reduction that converts any online convex optimization algorithm suffering $O(sqrtT)$ regret into an $epsilon$-differentially private convex algorithm with the optimal convergence rate $tilde O(sqrtT + sqrtd/epsilon T)$ on smooth losses in linear time.
arXiv Detail & Related papers (2022-10-12T21:13:31Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - On Private Online Convex Optimization: Optimal Algorithms in
$\ell_p$-Geometry and High Dimensional Contextual Bandits [9.798304879986604]
We study the Differentially private (DP) convex optimization problem with streaming data sampled from a distribution and arrives sequentially.
We also consider the continual release model where parameters related to private information are updated and released upon each new data, often known as the online algorithms.
Our algorithm achieves in linear time the optimal excess risk when $1pleq 2$ and the state-of-the-art excess risk meeting the non-private lower ones when $2pleqinfty$.
arXiv Detail & Related papers (2022-06-16T12:09:47Z) - Linear Speedup in Personalized Collaborative Learning [69.45124829480106]
Personalization in federated learning can improve the accuracy of a model for a user by trading off the model's bias.
We formalize the personalized collaborative learning problem as optimization of a user's objective.
We explore conditions under which we can optimally trade-off their bias for a reduction in variance.
arXiv Detail & Related papers (2021-11-10T22:12:52Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Output Perturbation for Differentially Private Convex Optimization with
Improved Population Loss Bounds, Runtimes and Applications to Private
Adversarial Training [12.386462516398469]
Finding efficient, easily implementable differentially private (DP) algorithms that offer strong excess risk bounds is an important problem in modern machine learning.
We provide the tightest known $(epsilon, 0)$-DP population loss bounds and fastest runtimes under the presence of smoothness and strong convexity.
We apply our theory to two learning frameworks: tilted ERM and adversarial learning frameworks.
arXiv Detail & Related papers (2021-02-09T08:47:06Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.