AS-GCL: Asymmetric Spectral Augmentation on Graph Contrastive Learning
- URL: http://arxiv.org/abs/2502.13525v1
- Date: Wed, 19 Feb 2025 08:22:57 GMT
- Title: AS-GCL: Asymmetric Spectral Augmentation on Graph Contrastive Learning
- Authors: Ruyue Liu, Rong Yin, Yong Liu, Xiaoshuai Hao, Haichao Shi, Can Ma, Weiping Wang,
- Abstract summary: Graph Contrastive Learning (GCL) has emerged as the foremost approach for self-supervised learning on graph-structured data.
We propose a novel paradigm called AS-GCL that incorporates asymmetric spectral augmentation for graph contrastive learning.
Our method introduces significant enhancements to each of these components.
- Score: 25.07818336162072
- License:
- Abstract: Graph Contrastive Learning (GCL) has emerged as the foremost approach for self-supervised learning on graph-structured data. GCL reduces reliance on labeled data by learning robust representations from various augmented views. However, existing GCL methods typically depend on consistent stochastic augmentations, which overlook their impact on the intrinsic structure of the spectral domain, thereby limiting the model's ability to generalize effectively. To address these limitations, we propose a novel paradigm called AS-GCL that incorporates asymmetric spectral augmentation for graph contrastive learning. A typical GCL framework consists of three key components: graph data augmentation, view encoding, and contrastive loss. Our method introduces significant enhancements to each of these components. Specifically, for data augmentation, we apply spectral-based augmentation to minimize spectral variations, strengthen structural invariance, and reduce noise. With respect to encoding, we employ parameter-sharing encoders with distinct diffusion operators to generate diverse, noise-resistant graph views. For contrastive loss, we introduce an upper-bound loss function that promotes generalization by maintaining a balanced distribution of intra- and inter-class distance. To our knowledge, we are the first to encode augmentation views of the spectral domain using asymmetric encoders. Extensive experiments on eight benchmark datasets across various node-level tasks demonstrate the advantages of the proposed method.
Related papers
- Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
We introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation.
We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR.
ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
arXiv Detail & Related papers (2024-12-20T04:05:09Z) - Revisiting Self-Supervised Heterogeneous Graph Learning from Spectral Clustering Perspective [52.662463893268225]
Self-supervised heterogeneous graph learning (SHGL) has shown promising potential in diverse scenarios.
Existing SHGL methods encounter two significant limitations.
We introduce a novel framework enhanced by rank and dual consistency constraints.
arXiv Detail & Related papers (2024-12-01T09:33:20Z) - SpeGCL: Self-supervised Graph Spectrum Contrastive Learning without Positive Samples [44.315865532262876]
Graph Contrastive Learning (GCL) excels at managing noise and fluctuations in input data, making it popular in various fields.
Most existing GCL methods focus mainly on the time domain (low-frequency information) for node feature representations.
We propose a novel spectral GCL framework without positive samples, named SpeGCL.
arXiv Detail & Related papers (2024-10-14T10:39:38Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
Graph neural clustering network (GNN) is a powerful learning approach for graph-based recommender systems.
In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL.
arXiv Detail & Related papers (2023-02-16T10:16:21Z) - MA-GCL: Model Augmentation Tricks for Graph Contrastive Learning [41.963242524220654]
We present three easy-to-implement model augmentation tricks for graph contrastive learning (GCL)
Specifically, we present three easy-to-implement model augmentation tricks for GCL, namely asymmetric, random and shuffling.
Experimental results show that MA-GCL can achieve state-of-the-art performance on node classification benchmarks.
arXiv Detail & Related papers (2022-12-14T05:04:10Z) - Spectral Feature Augmentation for Graph Contrastive Learning and Beyond [64.78221638149276]
We present a novel spectral feature argumentation for contrastive learning on graphs (and images)
For each data view, we estimate a low-rank approximation per feature map and subtract that approximation from the map to obtain its complement.
This is achieved by the proposed herein incomplete power iteration, a non-standard power regime which enjoys two valuable byproducts (under mere one or two iterations)
Experiments on graph/image datasets show that our spectral feature augmentation outperforms baselines.
arXiv Detail & Related papers (2022-12-02T08:48:11Z) - Revisiting Graph Contrastive Learning from the Perspective of Graph
Spectrum [91.06367395889514]
Graph Contrastive Learning (GCL) learning the node representations by augmenting graphs has attracted considerable attentions.
We answer these questions by establishing the connection between GCL and graph spectrum.
We propose a spectral graph contrastive learning module (SpCo), which is a general and GCL-friendly plug-in.
arXiv Detail & Related papers (2022-10-05T15:32:00Z) - Spectral Augmentation for Self-Supervised Learning on Graphs [43.19199994575821]
Graph contrastive learning (GCL) aims to learn representations via instance discrimination.
It relies on graph augmentation to reflect invariant patterns that are robust to small perturbations.
Recent studies mainly perform topology augmentations in a uniformly random manner in the spatial domain.
We develop spectral augmentation which guides topology augmentations by maximizing the spectral change.
arXiv Detail & Related papers (2022-10-02T22:20:07Z) - Let Invariant Rationale Discovery Inspire Graph Contrastive Learning [98.10268114789775]
We argue that a high-performing augmentation should preserve the salient semantics of anchor graphs regarding instance-discrimination.
We propose a new framework, Rationale-aware Graph Contrastive Learning (RGCL)
RGCL uses a rationale generator to reveal salient features about graph instance-discrimination as the rationale, and then creates rationale-aware views for contrastive learning.
arXiv Detail & Related papers (2022-06-16T01:28:40Z) - Augmentation-Free Graph Contrastive Learning [16.471928573824854]
Graph contrastive learning (GCL) is the most representative and prevalent self-supervised learning approach for graph-structured data.
Existing GCL methods rely on an augmentation scheme to learn the representations invariant across different augmentation views.
We propose a novel, theoretically-principled, and augmentation-free GCL, named AF-GCL, that leverages the features aggregated by Graph Neural Network to construct the self-supervision signal instead of augmentations.
arXiv Detail & Related papers (2022-04-11T05:37:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.