Breaking the Clusters: Uniformity-Optimization for Text-Based Sequential Recommendation
- URL: http://arxiv.org/abs/2502.13530v1
- Date: Wed, 19 Feb 2025 08:35:28 GMT
- Title: Breaking the Clusters: Uniformity-Optimization for Text-Based Sequential Recommendation
- Authors: Wuhan Chen, Zongwei Wang, Min Gao, Xin Xia, Feng Jiang, Junhao Wen,
- Abstract summary: Traditional sequential recommendation methods rely on explicit item IDs to capture user preferences over time.
Recent studies have shifted towards leveraging text-only information for recommendation.
We propose UniT, a framework that employs three pairwise item sampling strategies.
- Score: 17.042627742322427
- License:
- Abstract: Traditional sequential recommendation (SR) methods heavily rely on explicit item IDs to capture user preferences over time. This reliance introduces critical limitations in cold-start scenarios and domain transfer tasks, where unseen items and new contexts often lack established ID mappings. To overcome these limitations, recent studies have shifted towards leveraging text-only information for recommendation, thereby improving model generalization and adaptability across domains. Although promising, text-based SR faces unique difficulties: items' text descriptions often share semantic similarities that lead to clustered item representations, compromising their uniformity, a property essential for promoting diversity and enhancing generalization in recommendation systems. In this paper, we explore a novel framework to improve the uniformity of item representations in text-based SR. Our analysis reveals that items within a sequence exhibit marked semantic similarity, meaning they are closer in representation than items overall, and that this effect is more pronounced for less popular items, which form tighter clusters compared to their more popular counterparts. Based on these findings, we propose UniT, a framework that employs three pairwise item sampling strategies: Unified General Sampling Strategy, Sequence-Driven Sampling Strategy, and Popularity-Driven Sampling Strategy. Each strategy applies varying degrees of repulsion to selectively adjust the distances between item pairs, thereby refining representation uniformity while considering both sequence context and item popularity. Extensive experiments on multiple real-world datasets demonstrate that our proposed approach outperforms state-of-the-art models, validating the effectiveness of UniT in enhancing both representation uniformity and recommendation accuracy.The source code is available at https://github.com/ccwwhhh/Model-Rec.
Related papers
- SC-Rec: Enhancing Generative Retrieval with Self-Consistent Reranking for Sequential Recommendation [18.519480704213017]
We propose SC-Rec, a unified recommender system that learns diverse preference knowledge from two distinct item indices and multiple prompt templates.
SC-Rec considerably outperforms the state-of-the-art methods for sequential recommendation, effectively incorporating complementary knowledge from varied outputs of the model.
arXiv Detail & Related papers (2024-08-16T11:59:01Z) - Learning Partially Aligned Item Representation for Cross-Domain Sequential Recommendation [72.73379646418435]
Cross-domain sequential recommendation aims to uncover and transfer users' sequential preferences across domains.
misaligned item representations can potentially lead to sub-optimal sequential modeling and user representation alignment.
We propose a model-agnostic framework called textbfCross-domain item representation textbfAlignment for textbfCross-textbfDomain textbfSequential textbfRecommendation.
arXiv Detail & Related papers (2024-05-21T03:25:32Z) - Diffusion-based Contrastive Learning for Sequential Recommendation [6.3482831836623355]
We propose a Context-aware Diffusion-based Contrastive Learning for Sequential Recommendation, named CaDiRec.
CaDiRec employs a context-aware diffusion model to generate alternative items for the given positions within a sequence.
We train the entire framework in an end-to-end manner, with shared item embeddings between the diffusion model and the recommendation model.
arXiv Detail & Related papers (2024-05-15T14:20:37Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Controllable Data Augmentation for Few-Shot Text Mining with Chain-of-Thought Attribute Manipulation [35.33340453046864]
Chain-of-Thought Attribute Manipulation (CoTAM) is a novel approach that generates new data from existing examples.
We leverage the chain-of-thought prompting to directly edit the text in three steps, (1) attribute decomposition, (2) manipulation proposal, and (3) sentence reconstruction.
arXiv Detail & Related papers (2023-07-14T00:10:03Z) - Semantics-Aware Dynamic Localization and Refinement for Referring Image
Segmentation [102.25240608024063]
Referring image segments an image from a language expression.
We develop an algorithm that shifts from being localization-centric to segmentation-language.
Compared to its counterparts, our method is more versatile yet effective.
arXiv Detail & Related papers (2023-03-11T08:42:40Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - Towards Universal Sequence Representation Learning for Recommender
Systems [98.02154164251846]
We present a novel universal sequence representation learning approach, named UniSRec.
The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios.
Our approach can be effectively transferred to new recommendation domains or platforms in a parameter-efficient way.
arXiv Detail & Related papers (2022-06-13T07:21:56Z) - Enhancing Sequential Recommendation with Graph Contrastive Learning [64.05023449355036]
This paper proposes a novel sequential recommendation framework, namely Graph Contrastive Learning for Sequential Recommendation (GCL4SR)
GCL4SR employs a Weighted Item Transition Graph (WITG), built based on interaction sequences of all users, to provide global context information for each interaction and weaken the noise information in the sequence data.
Experiments on real-world datasets demonstrate that GCL4SR consistently outperforms state-of-the-art sequential recommendation methods.
arXiv Detail & Related papers (2022-05-30T03:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.