Exploring Mutual Cross-Modal Attention for Context-Aware Human Affordance Generation
- URL: http://arxiv.org/abs/2502.13637v1
- Date: Wed, 19 Feb 2025 11:24:45 GMT
- Title: Exploring Mutual Cross-Modal Attention for Context-Aware Human Affordance Generation
- Authors: Prasun Roy, Saumik Bhattacharya, Subhankar Ghosh, Umapada Pal, Michael Blumenstein,
- Abstract summary: We propose a novel cross-attention mechanism to encode the scene context for affordance prediction in 2D scenes.<n>First, we sample a probable location for a person within the scene using a variational autoencoder conditioned on the global scene context encoding.<n>Next, we predict a potential pose template from a set of existing human pose candidates using a classifier on the local context encoding.
- Score: 18.73832646369506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human affordance learning investigates contextually relevant novel pose prediction such that the estimated pose represents a valid human action within the scene. While the task is fundamental to machine perception and automated interactive navigation agents, the exponentially large number of probable pose and action variations make the problem challenging and non-trivial. However, the existing datasets and methods for human affordance prediction in 2D scenes are significantly limited in the literature. In this paper, we propose a novel cross-attention mechanism to encode the scene context for affordance prediction by mutually attending spatial feature maps from two different modalities. The proposed method is disentangled among individual subtasks to efficiently reduce the problem complexity. First, we sample a probable location for a person within the scene using a variational autoencoder (VAE) conditioned on the global scene context encoding. Next, we predict a potential pose template from a set of existing human pose candidates using a classifier on the local context encoding around the predicted location. In the subsequent steps, we use two VAEs to sample the scale and deformation parameters for the predicted pose template by conditioning on the local context and template class. Our experiments show significant improvements over the previous baseline of human affordance injection into complex 2D scenes.
Related papers
- Closely Interactive Human Reconstruction with Proxemics and Physics-Guided Adaption [64.07607726562841]
Existing multi-person human reconstruction approaches mainly focus on recovering accurate poses or avoiding penetration.
In this work, we tackle the task of reconstructing closely interactive humans from a monocular video.
We propose to leverage knowledge from proxemic behavior and physics to compensate the lack of visual information.
arXiv Detail & Related papers (2024-04-17T11:55:45Z) - Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotion is a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior.<n>Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY.
arXiv Detail & Related papers (2023-12-26T18:56:49Z) - DiffPose: SpatioTemporal Diffusion Model for Video-Based Human Pose
Estimation [16.32910684198013]
We present DiffPose, a novel diffusion architecture that formulates video-based human pose estimation as a conditional heatmap generation problem.
We show two unique characteristics from DiffPose on pose estimation task: (i) the ability to combine multiple sets of pose estimates to improve prediction accuracy, particularly for challenging joints, and (ii) the ability to adjust the number of iterative steps for feature refinement without retraining the model.
arXiv Detail & Related papers (2023-07-31T14:00:23Z) - Dual networks based 3D Multi-Person Pose Estimation from Monocular Video [42.01876518017639]
Multi-person 3D pose estimation is more challenging than single pose estimation.
Existing top-down and bottom-up approaches to pose estimation suffer from detection errors.
We propose the integration of top-down and bottom-up approaches to exploit their strengths.
arXiv Detail & Related papers (2022-05-02T08:53:38Z) - Non-Local Latent Relation Distillation for Self-Adaptive 3D Human Pose
Estimation [63.199549837604444]
3D human pose estimation approaches leverage different forms of strong (2D/3D pose) or weak (multi-view or depth) paired supervision.
We cast 3D pose learning as a self-supervised adaptation problem that aims to transfer the task knowledge from a labeled source domain to a completely unpaired target.
We evaluate different self-adaptation settings and demonstrate state-of-the-art 3D human pose estimation performance on standard benchmarks.
arXiv Detail & Related papers (2022-04-05T03:52:57Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
We propose piecewise transformation fields that learn 3D translation vectors to map any query point in posed space to its correspond position in rest-pose space.
We show that fitting parametric models with poses by our network results in much better registration quality, especially for extreme poses.
arXiv Detail & Related papers (2021-04-16T15:16:09Z) - Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-View
Geometry [62.29762409558553]
Epipolar constraints are at the core of feature matching and depth estimation in multi-person 3D human pose estimation methods.
Despite the satisfactory performance of this formulation in sparser crowd scenes, its effectiveness is frequently challenged under denser crowd circumstances.
In this paper, we depart from the multi-person 3D pose estimation formulation, and instead reformulate it as crowd pose estimation.
arXiv Detail & Related papers (2020-07-21T17:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.