Measuring the Effect of Transcription Noise on Downstream Language Understanding Tasks
- URL: http://arxiv.org/abs/2502.13645v1
- Date: Wed, 19 Feb 2025 11:37:59 GMT
- Title: Measuring the Effect of Transcription Noise on Downstream Language Understanding Tasks
- Authors: Ori Shapira, Shlomo E. Chazan, Amir DN Cohen,
- Abstract summary: We propose a framework for assessing task models in diverse noisy settings.
We find that task models can tolerate a certain level of noise, and are affected differently by the types of errors in the transcript.
- Score: 9.284905374340804
- License:
- Abstract: With the increasing prevalence of recorded human speech, spoken language understanding (SLU) is essential for its efficient processing. In order to process the speech, it is commonly transcribed using automatic speech recognition technology. This speech-to-text transition introduces errors into the transcripts, which subsequently propagate to downstream NLP tasks, such as dialogue summarization. While it is known that transcript noise affects downstream tasks, a systematic approach to analyzing its effects across different noise severities and types has not been addressed. We propose a configurable framework for assessing task models in diverse noisy settings, and for examining the impact of transcript-cleaning techniques. The framework facilitates the investigation of task model behavior, which can in turn support the development of effective SLU solutions. We exemplify the utility of our framework on three SLU tasks and four task models, offering insights regarding the effect of transcript noise on tasks in general and models in particular. For instance, we find that task models can tolerate a certain level of noise, and are affected differently by the types of errors in the transcript.
Related papers
- SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
We are first to explore the potential of prompting speech LMs in the domain of speech processing.
We reformulate speech processing tasks into speech-to-unit generation tasks.
We show that the prompting method can achieve competitive performance compared to the strong fine-tuning method.
arXiv Detail & Related papers (2024-08-23T13:00:10Z) - Large Language Models are Efficient Learners of Noise-Robust Speech
Recognition [65.95847272465124]
Recent advances in large language models (LLMs) have promoted generative error correction (GER) for automatic speech recognition (ASR)
In this work, we extend the benchmark to noisy conditions and investigate if we can teach LLMs to perform denoising for GER.
Experiments on various latest LLMs demonstrate our approach achieves a new breakthrough with up to 53.9% correction improvement in terms of word error rate.
arXiv Detail & Related papers (2024-01-19T01:29:27Z) - Back Transcription as a Method for Evaluating Robustness of Natural
Language Understanding Models to Speech Recognition Errors [0.4681661603096333]
In a spoken dialogue system, an NLU model is preceded by a speech recognition system that can deteriorate the performance of natural language understanding.
This paper proposes a method for investigating the impact of speech recognition errors on the performance of natural language understanding models.
arXiv Detail & Related papers (2023-10-25T13:07:07Z) - SpeechX: Neural Codec Language Model as a Versatile Speech Transformer [57.82364057872905]
SpeechX is a versatile speech generation model capable of zero-shot TTS and various speech transformation tasks.
Experimental results show SpeechX's efficacy in various tasks, including zero-shot TTS, noise suppression, target speaker extraction, speech removal, and speech editing with or without background noise.
arXiv Detail & Related papers (2023-08-14T01:01:19Z) - SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding
Tasks [88.4408774253634]
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community.
There are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers.
Recent work has begun to introduce such benchmark for several tasks.
arXiv Detail & Related papers (2022-12-20T18:39:59Z) - Sources of Noise in Dialogue and How to Deal with Them [63.02707014103651]
Training dialogue systems often entails dealing with noisy training examples and unexpected user inputs.
Despite their prevalence, there currently lacks an accurate survey of dialogue noise.
This paper addresses this gap by first constructing a taxonomy of noise encountered by dialogue systems.
arXiv Detail & Related papers (2022-12-06T04:36:32Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
We report the first exploration of the prompt tuning paradigm for speech processing tasks based on Generative Spoken Language Model (GSLM)
Experiment results show that the prompt tuning technique achieves competitive performance in speech classification tasks with fewer trainable parameters than fine-tuning specialized downstream models.
arXiv Detail & Related papers (2022-03-31T03:26:55Z) - Adversarial Feature Learning and Unsupervised Clustering based Speech
Synthesis for Found Data with Acoustic and Textual Noise [18.135965605011105]
Attention-based sequence-to-sequence (seq2seq) speech synthesis has achieved extraordinary performance.
A studio-quality corpus with manual transcription is necessary to train such seq2seq systems.
We propose an approach to build high-quality and stable seq2seq based speech synthesis system using challenging found data.
arXiv Detail & Related papers (2020-04-28T15:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.