Image compositing is all you need for data augmentation
- URL: http://arxiv.org/abs/2502.13936v1
- Date: Wed, 19 Feb 2025 18:24:02 GMT
- Title: Image compositing is all you need for data augmentation
- Authors: Ang Jia Ning Shermaine, Michalis Lazarou, Tania Stathaki,
- Abstract summary: This paper investigates the impact of various data augmentation techniques on the performance of object detection models.
We fine-tune the model on a custom dataset consisting of commercial and military aircraft, applying different augmentation strategies.
- Score: 6.647179199462945
- License:
- Abstract: This paper investigates the impact of various data augmentation techniques on the performance of object detection models. Specifically, we explore classical augmentation methods, image compositing, and advanced generative models such as Stable Diffusion XL and ControlNet. The objective of this work is to enhance model robustness and improve detection accuracy, particularly when working with limited annotated data. Using YOLOv8, we fine-tune the model on a custom dataset consisting of commercial and military aircraft, applying different augmentation strategies. Our experiments show that image compositing offers the highest improvement in detection performance, as measured by precision, recall, and mean Average Precision (mAP@0.50). Other methods, including Stable Diffusion XL and ControlNet, also demonstrate significant gains, highlighting the potential of advanced data augmentation techniques for object detection tasks. The results underline the importance of dataset diversity and augmentation in achieving better generalization and performance in real-world applications. Future work will explore the integration of semi-supervised learning methods and further optimizations to enhance model performance across larger and more complex datasets.
Related papers
- Exploring the Efficacy of Meta-Learning: Unveiling Superior Data Diversity Utilization of MAML Over Pre-training [1.3980986259786223]
We show that dataset diversity can impact the performance of vision models.
Our study shows positive correlations between test set accuracy and data diversity.
These findings support our hypothesis and demonstrate a promising way for a deeper exploration of how formal data diversity influences model performance.
arXiv Detail & Related papers (2025-01-15T00:56:59Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - From Blurry to Brilliant Detection: YOLOv5-Based Aerial Object Detection
with Super Resolution [4.107182710549721]
We present an innovative approach that combines super-resolution and an adapted lightweight YOLOv5 architecture.
Our experimental results demonstrate the model's superior performance in detecting small and densely clustered objects.
arXiv Detail & Related papers (2024-01-26T05:50:58Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Exploring the Effects of Data Augmentation for Drivable Area
Segmentation [0.0]
We focus on investigating the benefits of data augmentation by analyzing pre-existing image datasets.
Our results show that the performance and robustness of existing state of the art (or SOTA) models can be increased dramatically.
arXiv Detail & Related papers (2022-08-06T03:39:37Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Learning Representational Invariances for Data-Efficient Action
Recognition [52.23716087656834]
We show that our data augmentation strategy leads to promising performance on the Kinetics-100, UCF-101, and HMDB-51 datasets.
We also validate our data augmentation strategy in the fully supervised setting and demonstrate improved performance.
arXiv Detail & Related papers (2021-03-30T17:59:49Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.