PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC
- URL: http://arxiv.org/abs/2502.14282v2
- Date: Fri, 21 Feb 2025 02:54:09 GMT
- Title: PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC
- Authors: Haowei Liu, Xi Zhang, Haiyang Xu, Yuyang Wanyan, Junyang Wang, Ming Yan, Ji Zhang, Chunfeng Yuan, Changsheng Xu, Weiming Hu, Fei Huang,
- Abstract summary: In this paper, we propose a hierarchical agent framework named PC-Agent.<n>From the perception perspective, we devise an Active Perception Module (APM) to overcome the inadequate abilities of current MLLMs in perceiving screenshot content.<n>From the decision-making perspective, to handle complex user instructions and interdependent subtasks more effectively, we propose a hierarchical multi-agent collaboration architecture.
- Score: 98.82146219495792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of MLLM-based GUI agents, compared to smartphones, the PC scenario not only features a more complex interactive environment, but also involves more intricate intra- and inter-app workflows. To address these issues, we propose a hierarchical agent framework named PC-Agent. Specifically, from the perception perspective, we devise an Active Perception Module (APM) to overcome the inadequate abilities of current MLLMs in perceiving screenshot content. From the decision-making perspective, to handle complex user instructions and interdependent subtasks more effectively, we propose a hierarchical multi-agent collaboration architecture that decomposes decision-making processes into Instruction-Subtask-Action levels. Within this architecture, three agents (i.e., Manager, Progress and Decision) are set up for instruction decomposition, progress tracking and step-by-step decision-making respectively. Additionally, a Reflection agent is adopted to enable timely bottom-up error feedback and adjustment. We also introduce a new benchmark PC-Eval with 25 real-world complex instructions. Empirical results on PC-Eval show that our PC-Agent achieves a 32% absolute improvement of task success rate over previous state-of-the-art methods. The code is available at https://github.com/X-PLUG/MobileAgent/tree/main/PC-Agent.
Related papers
- Iterative Trajectory Exploration for Multimodal Agents [69.32855772335624]
We propose an online self-exploration method for multimodal agents, namely SPORT.
SPORT operates through four iterative components: task synthesis, step sampling, step verification, and preference tuning.
Evaluation in the GTA and GAIA benchmarks show that the SPORT Agent achieves 6.41% and 3.64% improvements.
arXiv Detail & Related papers (2025-04-30T12:01:27Z) - UFO2: The Desktop AgentOS [60.317812905300336]
UFO2 is a multiagent AgentOS for Windows desktops that elevates into practical, system-level automation.
We evaluate UFO2 across over 20 real-world Windows applications, demonstrating substantial improvements in robustness and execution accuracy over prior CUAs.
Our results show that deep OS integration unlocks a scalable path toward reliable, user-aligned desktop automation.
arXiv Detail & Related papers (2025-04-20T13:04:43Z) - Agent S2: A Compositional Generalist-Specialist Framework for Computer Use Agents [30.253353551910404]
Computer use agents automate digital tasks by directly interacting with graphical user interfaces (GUIs) on computers and mobile devices.
We introduce Agent S2, a novel compositional framework that delegates cognitive responsibilities across various generalist and specialist models.
Agent S2 establishes new state-of-the-art (SOTA) performance on three prominent computer use benchmarks.
arXiv Detail & Related papers (2025-04-01T15:40:27Z) - Agent S: An Open Agentic Framework that Uses Computers Like a Human [31.16046798529319]
We present Agent S, an open agentic framework that enables autonomous interaction with computers through a Graphical User Interface (GUI)
Agent S aims to address three key challenges in automating computer tasks: acquiring domain-specific knowledge, planning over long task horizons, and handling dynamic, non-uniform interfaces.
arXiv Detail & Related papers (2024-10-10T17:43:51Z) - CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents [49.68117560675367]
Crab is the first benchmark framework designed to support cross-environment tasks.
Our framework supports multiple devices and can be easily extended to any environment with a Python interface.
The experimental results demonstrate that the single agent with GPT-4o achieves the best completion ratio of 38.01%.
arXiv Detail & Related papers (2024-07-01T17:55:04Z) - CAAP: Context-Aware Action Planning Prompting to Solve Computer Tasks with Front-End UI Only [21.054681757006385]
We propose an agent that perceives its environment solely through screenshot images.<n>By leveraging the reasoning capability of the Large Language Models, we eliminate the need for large-scale human demonstration data.<n>Agent achieves an average success rate of 94.5% on MiniWoB++ and an average task score of 62.3 on WebShop.
arXiv Detail & Related papers (2024-06-11T05:21:20Z) - Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration [52.25473993987409]
We propose Mobile-Agent-v2, a multi-agent architecture for mobile device operation assistance.
The architecture comprises three agents: planning agent, decision agent, and reflection agent.
We show that Mobile-Agent-v2 achieves over a 30% improvement in task completion compared to the single-agent architecture.
arXiv Detail & Related papers (2024-06-03T05:50:00Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
We open-source a new AI agent library, AgentLite, which simplifies research investigation into LLM agents.
AgentLite is a task-oriented framework designed to enhance the ability of agents to break down tasks.
We introduce multiple practical applications developed with AgentLite to demonstrate its convenience and flexibility.
arXiv Detail & Related papers (2024-02-23T06:25:20Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agent is designed to enhance the capabilities of Large Language Models (LLMs) in task-solving.
Our framework includes two novel modules: hierarchical Objects and Key Results generation and multi-level evaluation.
arXiv Detail & Related papers (2023-11-28T06:16:30Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgents is an innovative framework that adaptively generates and coordinates multiple specialized agents to build an AI team according to different tasks.
Our experiments on various benchmarks demonstrate that AutoAgents generates more coherent and accurate solutions than the existing multi-agent methods.
arXiv Detail & Related papers (2023-09-29T14:46:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.