Weed Detection using Convolutional Neural Network
- URL: http://arxiv.org/abs/2502.14360v1
- Date: Thu, 20 Feb 2025 08:37:23 GMT
- Title: Weed Detection using Convolutional Neural Network
- Authors: Santosh Kumar Tripathi, Shivendra Pratap Singh, Devansh Sharma, Harshavardhan U Patekar,
- Abstract summary: We use convolutional neural networks (CNNs) for weed detection in agricultural land.
We specifically investigate the application of two CNN layer types, Conv2d and dilated Conv2d, for weed detection in crop fields.
The suggested method extracts features from the input photos using pre-trained models, which are subsequently adjusted for weed detection.
- Score: 0.0
- License:
- Abstract: In this paper we use convolutional neural networks (CNNs) for weed detection in agricultural land. We specifically investigate the application of two CNN layer types, Conv2d and dilated Conv2d, for weed detection in crop fields. The suggested method extracts features from the input photos using pre-trained models, which are subsequently adjusted for weed detection. The findings of the experiment, which used a sizable collection of dataset consisting of 15336 segments, being 3249 of soil, 7376 of soybean, 3520 grass and 1191 of broadleaf weeds. show that the suggested approach can accurately and successfully detect weeds at an accuracy of 94%. This study has significant ramifications for lowering the usage of toxic herbicides and increasing the effectiveness of weed management in agriculture.
Related papers
- Towards Efficient and Intelligent Laser Weeding: Method and Dataset for Weed Stem Detection [51.65457287518379]
This study is the first empirical investigation of weed recognition for laser weeding.
We integrate the detection of crop and weed with the localization of weed stem into one end-to-end system.
The proposed system improves weeding accuracy by 6.7% and reduces energy cost by 32.3% compared to existing weed recognition systems.
arXiv Detail & Related papers (2025-02-10T08:42:46Z) - Remote Sensing for Weed Detection and Control [0.0]
Ryegrass can cause substantial reductions in yield and grain quality.
To control the cost and environmental impact we detect weeds in drone and satellite imagery.
arXiv Detail & Related papers (2024-10-29T21:41:42Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Site-specific weed management in corn using UAS imagery analysis and
computer vision techniques [0.0]
Currently, weed control in commercial corn production is performed without considering weed distribution information in the field.
The objective of this study was to perform site-specific weed control (SSWC) in a corn field by 1) using an unmanned aerial system (UAS) to map the spatial distribution information of weeds in the field.
Using our SSWC approach, we were able to save 26.23% of the land (1.97 acres) from being sprayed with chemical herbicides compared to the existing method.
arXiv Detail & Related papers (2022-12-31T21:48:14Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - A Survey of Deep Learning Techniques for Weed Detection from Images [4.96981595868944]
We review existing deep learning-based weed detection and classification techniques.
We find that most studies applied supervised learning techniques, they achieved high classification accuracy.
Past experiments have already achieved high accuracy when a large amount of labelled data is available.
arXiv Detail & Related papers (2021-03-02T02:02:24Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
We propose a novel deep learning method based on a Convolutional Neural Network (CNN)
It simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations.
The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops.
arXiv Detail & Related papers (2020-12-31T18:51:17Z) - Weed Density and Distribution Estimation for Precision Agriculture using
Semi-Supervised Learning [0.0]
We propose a deep learning-based semi-supervised approach for robust estimation of weed density and distribution.
In this work, the foreground vegetation pixels containing crops and weeds are first identified using a Convolutional Neural Network (CNN) based unsupervised segmentation.
The weed infected regions are identified using a fine-tuned CNN, eliminating the need for designing hand-crafted features.
arXiv Detail & Related papers (2020-11-04T09:35:53Z) - Pollen13K: A Large Scale Microscope Pollen Grain Image Dataset [63.05335933454068]
This work presents the first large-scale pollen grain image dataset, including more than 13 thousands objects.
The paper focuses on the employed data acquisition steps, which include aerobiological sampling, microscope image acquisition, object detection, segmentation and labelling.
arXiv Detail & Related papers (2020-07-09T10:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.