An Efficient Ground-aerial Transportation System for Pest Control Enabled by AI-based Autonomous Nano-UAVs
- URL: http://arxiv.org/abs/2502.14455v1
- Date: Thu, 20 Feb 2025 11:14:55 GMT
- Title: An Efficient Ground-aerial Transportation System for Pest Control Enabled by AI-based Autonomous Nano-UAVs
- Authors: Luca Crupi, Luca Butera, Alberto Ferrante, Alessandro Giusti, Daniele Palossi,
- Abstract summary: We design, fine-tune, and optimize a tiny image-based convolutional neural network (CNN) for pest detection.
Our CNN runs in real-time at 6.8 frame/s, requiring 33 mW on a GWT GAP9 System-on-Chip aboard a Crazyflie nano-UAV.
In this scenario, our efficient transportation system, compared to a traditional single-ground vehicle performing both inspection and treatment, can save up to 20 h working time.
- Score: 45.07031440932014
- License:
- Abstract: Efficient crop production requires early detection of pest outbreaks and timely treatments; we consider a solution based on a fleet of multiple autonomous miniaturized unmanned aerial vehicles (nano-UAVs) to visually detect pests and a single slower heavy vehicle that visits the detected outbreaks to deliver treatments. To cope with the extreme limitations aboard nano-UAVs, e.g., low-resolution sensors and sub-100 mW computational power budget, we design, fine-tune, and optimize a tiny image-based convolutional neural network (CNN) for pest detection. Despite the small size of our CNN (i.e., 0.58 GOps/inference), on our dataset, it scores a mean average precision (mAP) of 0.79 in detecting harmful bugs, i.e., 14% lower mAP but 32x fewer operations than the best-performing CNN in the literature. Our CNN runs in real-time at 6.8 frame/s, requiring 33 mW on a GWT GAP9 System-on-Chip aboard a Crazyflie nano-UAV. Then, to cope with in-field unexpected obstacles, we leverage a global+local path planner based on the A* algorithm. The global path planner determines the best route for the nano-UAV to sweep the entire area, while the local one runs up to 50 Hz aboard our nano-UAV and prevents collision by adjusting the short-distance path. Finally, we demonstrate with in-simulator experiments that once a 25 nano-UAVs fleet has combed a 200x200 m vineyard, collected information can be used to plan the best path for the tractor, visiting all and only required hotspots. In this scenario, our efficient transportation system, compared to a traditional single-ground vehicle performing both inspection and treatment, can save up to 20 h working time.
Related papers
- Training on the Fly: On-device Self-supervised Learning aboard Nano-drones within 20 mW [52.280742520586756]
Miniaturized cyber-physical systems (CPSes) powered by tiny machine learning (TinyML), such as nano-drones, are becoming an increasingly attractive technology.
Simple electronics make these CPSes inexpensive, but strongly limit the computational, memory, and sensing resources available on board.
We present a novel on-device fine-tuning approach that relies only on the limited ultra-low power resources available aboard nano-drones.
arXiv Detail & Related papers (2024-08-06T13:11:36Z) - A Deep Learning-based Pest Insect Monitoring System for Ultra-low Power Pocket-sized Drones [1.7945764007196348]
Smart farming and precision agriculture represent game-changer technologies for efficient and sustainable agribusiness.
Miniaturized palm-sized drones can act as flexible smart sensors inspecting crops, looking for early signs of potential pest outbreaking.
This work presents a novel vertically integrated solution featuring two ultra-low power System-on-Chips.
arXiv Detail & Related papers (2024-04-02T10:39:54Z) - High-throughput Visual Nano-drone to Nano-drone Relative Localization using Onboard Fully Convolutional Networks [51.23613834703353]
Relative drone-to-drone localization is a fundamental building block for any swarm operations.
We present a vertically integrated system based on a novel vision-based fully convolutional neural network (FCNN)
Our model results in an R-squared improvement from 32 to 47% on the horizontal image coordinate and from 18 to 55% on the vertical image coordinate, on a real-world dataset of 30k images.
arXiv Detail & Related papers (2024-02-21T12:34:31Z) - Ultra-low Power Deep Learning-based Monocular Relative Localization
Onboard Nano-quadrotors [64.68349896377629]
This work presents a novel autonomous end-to-end system that addresses the monocular relative localization, through deep neural networks (DNNs), of two peer nano-drones.
To cope with the ultra-constrained nano-drone platform, we propose a vertically-integrated framework, including dataset augmentation, quantization, and system optimizations.
Experimental results show that our DNN can precisely localize a 10cm-size target nano-drone by employing only low-resolution monochrome images, up to 2m distance.
arXiv Detail & Related papers (2023-03-03T14:14:08Z) - Deep Neural Network Architecture Search for Accurate Visual Pose
Estimation aboard Nano-UAVs [69.19616451596342]
Miniaturized unmanned aerial vehicles (UAVs) are an emerging and trending topic.
We leverage a novel neural architecture search (NAS) technique to automatically identify several convolutional neural networks (CNNs) for a visual pose estimation task.
Our results improve the State-of-the-Art by reducing the in-field control error of 32% while achieving a real-time onboard inference-rate of 10Hz@10mW and 50Hz@90mW.
arXiv Detail & Related papers (2023-03-03T14:02:09Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
Drone-to-drone detection using visual feed has crucial applications, such as detecting drone collisions, detecting drone attacks, or coordinating flight with other drones.
Existing methods are computationally costly, follow non-end-to-end optimization, and have complex multi-stage pipelines, making them less suitable for real-time deployment on edge devices.
We propose a simple yet effective framework, itTransVisDrone, that provides an end-to-end solution with higher computational efficiency.
arXiv Detail & Related papers (2022-10-16T03:05:13Z) - A Real-time Low-cost Artificial Intelligence System for Autonomous
Spraying in Palm Plantations [1.6799377888527687]
In precision crop protection, (target-orientated) object detection in image processing can help navigate Unmanned Aerial Vehicles (UAV, crop protection drones) to the right place to apply the pesticide.
We propose a solution based on a light deep neural network (DNN), called Ag-YOLO, which can make the crop protection UAV have the ability to target detection and autonomous operation.
arXiv Detail & Related papers (2021-03-06T15:05:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.