LoRA-MGPO: Mitigating Double Descent in Low-Rank Adaptation via Momentum-Guided Perturbation Optimization
- URL: http://arxiv.org/abs/2502.14538v2
- Date: Thu, 29 May 2025 03:24:32 GMT
- Title: LoRA-MGPO: Mitigating Double Descent in Low-Rank Adaptation via Momentum-Guided Perturbation Optimization
- Authors: Yupeng Chang, Chenlu Guo, Yi Chang, Yuan Wu,
- Abstract summary: Low-Rank Adaptation (LoRA) methods exhibit "double descent" in training loss as increases.<n>LoRA-MGPO is a novel LoRA-based framework incorporating Momentum-Guided Perturbation optimization (MGPO)<n> Experiments on natural language understanding and generation benchmarks demonstrate that LoRA-MGPO outperforms LoRA and state-of-the-art PEFT methods.
- Score: 12.504723188498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), enable efficient adaptation of large language models (LLMs) via low-rank matrix optimization with frozen weights. However, LoRA typically exhibits "double descent" in training loss as rank increases, characterized by a three-phase dynamics: initial convergence, transient divergence, and eventual stabilization. This non-monotonic behavior delays convergence and impairs generalization through unstable gradients and attraction to sharp minima. To address these challenges, we propose LoRA-MGPO, a novel LoRA-based framework incorporating Momentum-Guided Perturbation Optimization (MGPO). First, MGPO eliminates Sharpness-Aware Minimization (SAM)'s dual gradient computations by reusing momentum vectors from optimizer states to guide perturbation directions. This retains SAM's training stability and flat minima preference with maintained efficiency. Second, MGPO incorporates adaptive perturbation normalization, scaling perturbation intensity via exponential moving average (EMA)-smoothed gradient magnitudes. Experiments on natural language understanding and generation benchmarks demonstrate that LoRA-MGPO outperforms LoRA and state-of-the-art PEFT methods. Further analysis confirms its ability to stabilize training and reduce sharp minima attraction, with smoother loss curves and improved convergence behavior. The code is available at https://github.com/llm172/LoRA-MGPO
Related papers
- Beyond Low-Rank Tuning: Model Prior-Guided Rank Allocation for Effective Transfer in Low-Data and Large-Gap Regimes [9.4848188271008]
Low-Rank Adaptation (LoRA) has proven effective in reducing computational costs while maintaining performance comparable to fully fine-tuned foundation models.<n>Current adaptive LoRA methods attempt to overcome this limitation by dynamically expanding or selectively allocating ranks.<n>We introduce Stable Rank-Guided Low-Rank Adaptation (SR-LoRA), a novel framework that utilizes the stable rank of pre-trained weight matrices as a natural prior for layer-wise rank allocation.
arXiv Detail & Related papers (2025-06-30T23:54:23Z) - RefLoRA: Refactored Low-Rank Adaptation for Efficient Fine-Tuning of Large Models [39.656014609027494]
Low-Rank Adaptation (LoRA) lowers the computational and memory overhead of fine-tuning large models by updating a low-dimensional subspace of the pre-trained weight matrix.<n>This article identifies the optimal low-rank factorization per step that minimizes an upper bound on the loss.<n>The resultanted low-rank adaptation (RefLoRA) method promotes a flatter loss landscape, along with consistent and balanced weight updates.
arXiv Detail & Related papers (2025-05-24T21:33:16Z) - SRLoRA: Subspace Recomposition in Low-Rank Adaptation via Importance-Based Fusion and Reinitialization [2.594346658179846]
Low-Rank Adaptation (LoRA) constrains updates to a fixed low-rank subspace.<n>We introduce Subspace Recomposition in Low-Rank Adaptation (SRLoRA) via importance-based fusion and reinitialization.<n> SRLoRA consistently achieves faster convergence and improved accuracy over standard LoRA.
arXiv Detail & Related papers (2025-05-18T14:12:40Z) - DeLoRA: Decoupling Angles and Strength in Low-rank Adaptation [44.99833362998488]
Decoupled Low-rank Adaptation (DeLoRA) is a novel finetuning method that normalizes and scales learnable low-rank matrices.<n>We show that DeLoRA matches or surpasses performance of competing PEFT methods, while exhibiting stronger robustness.
arXiv Detail & Related papers (2025-03-23T22:00:56Z) - Make LoRA Great Again: Boosting LoRA with Adaptive Singular Values and Mixture-of-Experts Optimization Alignment [20.382810396966473]
Low-Rank Adaptation (LoRA) enables parameter-efficient fine-tuning for Large Language Models (LLMs)
Current methods optimize LoRA by initializing with static singular value decomposition subsets, leading to suboptimal leveraging of pre-trained knowledge.
We propose underlineGreat LunderlineoRunderlineA Mixture-of-Experunderlinet (GOAT)
GOAT integrates relevant priors using an SVD-structured MoE, and aligns optimization with full fine-tuned MoE by deriving a theoretical scaling factor
arXiv Detail & Related papers (2025-02-24T06:48:13Z) - BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods.<n>We propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution.
arXiv Detail & Related papers (2025-02-19T10:33:22Z) - LoRA vs Full Fine-tuning: An Illusion of Equivalence [76.11938177294178]
We study how Low-Rank Adaptation (LoRA) and full-finetuning change pre-trained models.<n>We find that LoRA and full fine-tuning yield weight matrices whose singular value decompositions exhibit very different structure.<n>We extend the finding that LoRA forgets less than full fine-tuning and find its forgetting is vastly localized to the intruder dimension.
arXiv Detail & Related papers (2024-10-28T17:14:01Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - BA-LoRA: Bias-Alleviating Low-Rank Adaptation to Mitigate Catastrophic Inheritance in Large Language Models [13.660511750245245]
This work introduces Bias-Alleviating Low-Rank Adaptation (BA-LoRA), a novel PEFT method designed to counteract bias inheritance.<n>BA-LoRA incorporates three distinct regularization terms: (1) a consistency regularizer, (2) a diversity regularizer, and (3) a singular value decomposition regularizer.<n>The results demonstrate that BA-LoRA outperforms LoRA and its state-of-the-art variants.
arXiv Detail & Related papers (2024-08-08T16:13:26Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
We introduce Chain of LoRA, an iterative optimization framework inspired by the Frank-Wolfe algorithm.
We demonstrate that COLA can consistently outperform LoRA without additional computational or memory costs.
arXiv Detail & Related papers (2024-01-08T14:26:49Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.