Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning
- URL: http://arxiv.org/abs/2502.14768v1
- Date: Thu, 20 Feb 2025 17:49:26 GMT
- Title: Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning
- Authors: Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhirong Wu, Chong Luo,
- Abstract summary: We explore the potential of rule-based reinforcement learning in large reasoning models.<n>We use synthetic logic puzzles as training data due to their controllable complexity and straightforward answer verification.<n>Our 7B model develops advanced reasoning skills-such as reflection, verification, and summarization-that are absent from the logic corpus.
- Score: 23.99454995087634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by the success of DeepSeek-R1, we explore the potential of rule-based reinforcement learning (RL) in large reasoning models. To analyze reasoning dynamics, we use synthetic logic puzzles as training data due to their controllable complexity and straightforward answer verification. We make some key technical contributions that lead to effective and stable RL training: a system prompt that emphasizes the thinking and answering process, a stringent format reward function that penalizes outputs for taking shortcuts, and a straightforward training recipe that achieves stable convergence. Our 7B model develops advanced reasoning skills-such as reflection, verification, and summarization-that are absent from the logic corpus. Remarkably, after training on just 5K logic problems, it demonstrates generalization abilities to the challenging math benchmarks AIME and AMC.
Related papers
- Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - Scaling Up RL: Unlocking Diverse Reasoning in LLMs via Prolonged Training [121.5858973157225]
We investigate the effects of prolonged reinforcement learning on a small language model across a diverse set of reasoning domains.<n>We introduce controlled KL regularization, clipping ratio, and periodic reference policy resets as critical components for unlocking long-term performance gains.<n>Our model achieves significant improvements over strong baselines, including +14.7% on math, +13.9% on coding, and +54.8% on logic puzzle tasks.
arXiv Detail & Related papers (2025-07-16T17:59:24Z) - LogicPuzzleRL: Cultivating Robust Mathematical Reasoning in LLMs via Reinforcement Learning [29.047063129464494]
Large language models (LLMs) excel at many supervised tasks but often struggle with structured reasoning unfamiliar settings.<n>This discrepancy suggests that standard fine-tuning pipelines may instill narrow, domain-specifics rather than fostering general-purpose thinking strategies.<n>We propose a "play to learn" framework that fine-tunes LLMs through reinforcement learning on a suite of seven custom logic puzzles.
arXiv Detail & Related papers (2025-06-05T09:40:47Z) - Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning [82.43575191712726]
We introduce a fine-grained analytic framework to dissect the impact ofReinforcement learning on reasoning.<n>Our framework specifically investigates key elements that have been hypothesized to benefit from RL training.
arXiv Detail & Related papers (2025-06-05T07:53:59Z) - AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning [50.02117478165099]
We show that large-scale reinforcement learning can significantly enhance the reasoning capabilities of strong, small- and mid-sized models.<n>We propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts.
arXiv Detail & Related papers (2025-05-22T08:50:47Z) - RL of Thoughts: Navigating LLM Reasoning with Inference-time Reinforcement Learning [10.987902254146219]
We train a lightweight navigator model with reinforcement learning (RL) to adaptively enhance reasoning at inference time.<n>With less than 3K parameters, our RL navigator is able to make sub-10B LLMs comparable to 100B-scale counterparts.
arXiv Detail & Related papers (2025-05-20T09:43:33Z) - ToTRL: Unlock LLM Tree-of-Thoughts Reasoning Potential through Puzzles Solving [4.987786842464663]
Tree-of-thoughts (ToT) offers a conceptually more advanced approach by modeling reasoning as an exploration within a tree structure.<n>ToTRL is designed to guide LLMs in developing the parallel ToT strategy based on the sequential CoT strategy.<n>Our ToTQwen3-8B model, trained with ToTRL, achieves significant improvement in performance and reasoning efficiency on complex reasoning tasks.
arXiv Detail & Related papers (2025-05-19T05:18:58Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark designed to evaluate post-training methods for MLLMs in video understanding.
It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions.
Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT)
Our detailed analysis reveals that RL enhances visual perception but often produces less coherent reasoning chains.
arXiv Detail & Related papers (2025-03-31T17:55:23Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)
We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.
OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - On the Emergence of Thinking in LLMs I: Searching for the Right Intuition [34.32871896067864]
We propose a post-training framework called Reinforcement Learning via Self-Play (RLSP)
RLSP involves three steps: supervised fine-tuning with human or synthetic demonstrations of the reasoning process, using an exploration reward signal to encourage diverse and efficient reasoning behaviors, and RL training with an outcome verifier to ensure correctness while preventing reward hacking.
Empirical studies in the math domain show that RLSP improves reasoning.
arXiv Detail & Related papers (2025-02-10T18:52:04Z) - Demystifying Long Chain-of-Thought Reasoning in LLMs [46.352406501403465]
Long chains-of-thought (CoTs) enable strategies like backtracking and error correction.<n>Reinforcement learning (RL) has emerged as a crucial method for developing these capabilities.<n>We identify the key factors that enable models to generate long CoT trajectories.
arXiv Detail & Related papers (2025-02-05T17:13:32Z) - RL-STaR: Theoretical Analysis of Reinforcement Learning Frameworks for Self-Taught Reasoner [2.779063752888881]
Self-taught reasoner (STaR) framework uses reinforcement learning to automatically generate reasoning steps.
STaR and its variants have demonstrated empirical success, but a theoretical foundation explaining these improvements is lacking.
This work provides a theoretical framework for understanding the effectiveness of reinforcement learning on CoT reasoning and STaR.
arXiv Detail & Related papers (2024-10-31T13:17:53Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Reversal of Thought: Enhancing Large Language Models with Preference-Guided Reverse Reasoning Warm-up [9.42385235462794]
Large language models (LLMs) have shown remarkable performance in reasoning tasks but face limitations in mathematical and complex logical reasoning.<n>We propose Reversal of Thought (RoT) to enhance the logical reasoning abilities of LLMs during the warm-up phase prior to batch inference.<n>RoT utilizes a Preference-Guided Reverse Reasoning warm-up strategy, which integrates logical symbols for pseudocode planning.
arXiv Detail & Related papers (2024-10-16T07:44:28Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-thought (CoT) prompting is a popular in-context learning approach for large language models (LLMs)
This paper introduces a new approach named Latent Reasoning Skills (LaRS) that employs unsupervised learning to create a latent space representation of rationales.
arXiv Detail & Related papers (2023-12-07T20:36:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.