Structurally Disentangled Feature Fields Distillation for 3D Understanding and Editing
- URL: http://arxiv.org/abs/2502.14789v1
- Date: Thu, 20 Feb 2025 18:09:27 GMT
- Title: Structurally Disentangled Feature Fields Distillation for 3D Understanding and Editing
- Authors: Yoel Levy, David Shavin, Itai Lang, Sagie Benaim,
- Abstract summary: We propose to capture 3D features using multiple disentangled feature fields.<n>Each element can be controlled in isolation, enabling semantic and structural understanding and editing capabilities.
- Score: 14.7298711927857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has demonstrated the ability to leverage or distill pre-trained 2D features obtained using large pre-trained 2D models into 3D features, enabling impressive 3D editing and understanding capabilities using only 2D supervision. Although impressive, models assume that 3D features are captured using a single feature field and often make a simplifying assumption that features are view-independent. In this work, we propose instead to capture 3D features using multiple disentangled feature fields that capture different structural components of 3D features involving view-dependent and view-independent components, which can be learned from 2D feature supervision only. Subsequently, each element can be controlled in isolation, enabling semantic and structural understanding and editing capabilities. For instance, using a user click, one can segment 3D features corresponding to a given object and then segment, edit, or remove their view-dependent (reflective) properties. We evaluate our approach on the task of 3D segmentation and demonstrate a set of novel understanding and editing tasks.
Related papers
- OmniPart: Part-Aware 3D Generation with Semantic Decoupling and Structural Cohesion [31.767548415448957]
We introduce OmniPart, a novel framework for part-aware 3D object generation.<n>Our approach supports user-defined part granularity, precise localization, and enables diverse downstream applications.
arXiv Detail & Related papers (2025-07-08T16:46:15Z) - Chirpy3D: Creative Fine-grained 3D Object Fabrication via Part Sampling [128.23917788822948]
Chirpy3D is a novel approach for fine-grained 3D object generation in a zero-shot setting.
The model must infer plausible 3D structures, capture fine-grained details, and generalize to novel objects.
Our experiments demonstrate that Chirpy3D surpasses existing methods in generating creative 3D objects with higher quality and fine-grained details.
arXiv Detail & Related papers (2025-01-07T21:14:11Z) - PartGen: Part-level 3D Generation and Reconstruction with Multi-View Diffusion Models [63.1432721793683]
We introduce PartGen, a novel approach that generates 3D objects composed of meaningful parts starting from text, an image, or an unstructured 3D object.<n>We evaluate our method on generated and real 3D assets and show that it outperforms segmentation and part-extraction baselines by a large margin.
arXiv Detail & Related papers (2024-12-24T18:59:43Z) - 3D Part Segmentation via Geometric Aggregation of 2D Visual Features [57.20161517451834]
Supervised 3D part segmentation models are tailored for a fixed set of objects and parts, limiting their transferability to open-set, real-world scenarios.<n>Recent works have explored vision-language models (VLMs) as a promising alternative, using multi-view rendering and textual prompting to identify object parts.<n>To address these limitations, we propose COPS, a COmprehensive model for Parts that blends semantics extracted from visual concepts and 3D geometry to effectively identify object parts.
arXiv Detail & Related papers (2024-12-05T15:27:58Z) - SAMPart3D: Segment Any Part in 3D Objects [23.97392239910013]
3D part segmentation is a crucial and challenging task in 3D perception, playing a vital role in applications such as robotics, 3D generation, and 3D editing.
Recent methods harness the powerful Vision Language Models (VLMs) for 2D-to-3D knowledge distillation, achieving zero-shot 3D part segmentation.
In this work, we introduce SAMPart3D, a scalable zero-shot 3D part segmentation framework that segments any 3D object into semantic parts at multiple granularities.
arXiv Detail & Related papers (2024-11-11T17:59:10Z) - Manipulating Vehicle 3D Shapes through Latent Space Editing [0.0]
This paper introduces a framework that employs a pre-trained regressor, enabling continuous, precise, attribute-specific modifications to vehicle 3D models.
Our method not only preserves the inherent identity of vehicle 3D objects, but also supports multi-attribute editing, allowing for extensive customization without compromising the model's structural integrity.
arXiv Detail & Related papers (2024-10-31T13:41:16Z) - Regulating Intermediate 3D Features for Vision-Centric Autonomous
Driving [26.03800936700545]
We propose to regulate intermediate dense 3D features with the help of volume rendering.
Experimental results on the Occ3D and nuScenes datasets demonstrate that Vampire facilitates fine-grained and appropriate extraction of dense 3D features.
arXiv Detail & Related papers (2023-12-19T04:09:05Z) - ONeRF: Unsupervised 3D Object Segmentation from Multiple Views [59.445957699136564]
ONeRF is a method that automatically segments and reconstructs object instances in 3D from multi-view RGB images without any additional manual annotations.
The segmented 3D objects are represented using separate Neural Radiance Fields (NeRFs) which allow for various 3D scene editing and novel view rendering.
arXiv Detail & Related papers (2022-11-22T06:19:37Z) - Neural Feature Fusion Fields: 3D Distillation of Self-Supervised 2D
Image Representations [92.88108411154255]
We present a method that improves dense 2D image feature extractors when the latter are applied to the analysis of multiple images reconstructible as a 3D scene.
We show that our method not only enables semantic understanding in the context of scene-specific neural fields without the use of manual labels, but also consistently improves over the self-supervised 2D baselines.
arXiv Detail & Related papers (2022-09-07T23:24:09Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - Neural Groundplans: Persistent Neural Scene Representations from a
Single Image [90.04272671464238]
We present a method to map 2D image observations of a scene to a persistent 3D scene representation.
We propose conditional neural groundplans as persistent and memory-efficient scene representations.
arXiv Detail & Related papers (2022-07-22T17:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.