eC-Tab2Text: Aspect-Based Text Generation from e-Commerce Product Tables
- URL: http://arxiv.org/abs/2502.14820v1
- Date: Thu, 20 Feb 2025 18:41:48 GMT
- Title: eC-Tab2Text: Aspect-Based Text Generation from e-Commerce Product Tables
- Authors: Luis Antonio Gutiérrez Guanilo, Mir Tafseer Nayeem, Cristian López, Davood Rafiei,
- Abstract summary: We introduce eC-Tab2Text, a novel dataset designed to capture the intricacies of e-commerce.
We focus on text generation from product tables, enabling LLMs to produce high-quality, attribute-specific product reviews.
Our results demonstrate substantial improvements in generating contextually accurate reviews.
- Score: 6.384763560610077
- License:
- Abstract: Large Language Models (LLMs) have demonstrated exceptional versatility across diverse domains, yet their application in e-commerce remains underexplored due to a lack of domain-specific datasets. To address this gap, we introduce eC-Tab2Text, a novel dataset designed to capture the intricacies of e-commerce, including detailed product attributes and user-specific queries. Leveraging eC-Tab2Text, we focus on text generation from product tables, enabling LLMs to produce high-quality, attribute-specific product reviews from structured tabular data. Fine-tuned models were rigorously evaluated using standard Table2Text metrics, alongside correctness, faithfulness, and fluency assessments. Our results demonstrate substantial improvements in generating contextually accurate reviews, highlighting the transformative potential of tailored datasets and fine-tuning methodologies in optimizing e-commerce workflows. This work highlights the potential of LLMs in e-commerce workflows and the essential role of domain-specific datasets in tailoring them to industry-specific challenges.
Related papers
- Self-Refinement Strategies for LLM-based Product Attribute Value Extraction [51.45146101802871]
This paper investigates applying two self-refinement techniques to the product attribute value extraction task.
The experiments show that both self-refinement techniques fail to significantly improve the extraction performance while substantially increasing processing costs.
For scenarios with development data, fine-tuning yields the highest performance, while the ramp-up costs of fine-tuning are balanced out as the amount of product descriptions increases.
arXiv Detail & Related papers (2025-01-02T12:55:27Z) - PAE: LLM-based Product Attribute Extraction for E-Commerce Fashion Trends [0.6445605125467574]
This paper presents PAE, a product attribute extraction algorithm for future trend reports consisting text and images in PDF format.
Our contributions are three-fold: (a) We develop PAE, an efficient framework to extract attributes from unstructured data (text and images); (b) We provide catalog matching methodology based on BERT representations to discover the existing attributes using upcoming attribute values; (c) We conduct extensive experiments with several baselines and show that PAE is an effective, flexible and on par or superior (avg 92.5% F1-Score) framework to existing state-of-the-art for attribute value extraction
arXiv Detail & Related papers (2024-05-27T17:50:25Z) - Enhanced E-Commerce Attribute Extraction: Innovating with Decorative
Relation Correction and LLAMA 2.0-Based Annotation [4.81846973621209]
We propose a pioneering framework that integrates BERT for classification, a Conditional Random Fields (CRFs) layer for attribute value extraction, and Large Language Models (LLMs) for data annotation.
Our approach capitalizes on the robust representation learning of BERT, synergized with the sequence decoding prowess of CRFs, to adeptly identify and extract attribute values.
Our methodology is rigorously validated on various datasets, including Walmart, BestBuy's e-commerce NER dataset, and the CoNLL dataset.
arXiv Detail & Related papers (2023-12-09T08:26:30Z) - HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation [7.69801337810352]
We conduct parameter-efficient fine-tuning on the LLaMA2 model.
Our approach involves injecting reasoning information into the input by emphasizing table-specific row data.
On both the FetaQA and QTSumm datasets, our approach achieved state-of-the-art results.
arXiv Detail & Related papers (2023-11-15T12:02:52Z) - EcomGPT: Instruction-tuning Large Language Models with Chain-of-Task
Tasks for E-commerce [68.72104414369635]
We propose the first e-commerce instruction dataset EcomInstruct, with a total of 2.5 million instruction data.
EcomGPT outperforms ChatGPT in term of cross-dataset/task generalization on E-commerce tasks.
arXiv Detail & Related papers (2023-08-14T06:49:53Z) - Product Information Extraction using ChatGPT [69.12244027050454]
This paper explores the potential of ChatGPT for extracting attribute/value pairs from product descriptions.
Our results show that ChatGPT achieves a performance similar to a pre-trained language model but requires much smaller amounts of training data and computation for fine-tuning.
arXiv Detail & Related papers (2023-06-23T09:30:01Z) - Automated Extraction of Fine-Grained Standardized Product Information
from Unstructured Multilingual Web Data [66.21317300595483]
We show how recent advances in machine learning, combined with a recently published multilingual data set, enable robust product attribute extraction.
Our models can reliably predict product attributes across online shops, languages, or both.
arXiv Detail & Related papers (2023-02-23T16:26:11Z) - Continuous Prompt Tuning Based Textual Entailment Model for E-commerce
Entity Typing [12.77583836715184]
Rapid activity in e-commerce has led to the rapid emergence of new entities, which is difficult to be solved by general entity typing.
We propose our textual entailment model with continuous prompt tuning based hypotheses and fusion embeddings for e-commerce entity typing.
We show our proposed model improves the average F1 score by around 2% compared to the baseline BERT entity typing model.
arXiv Detail & Related papers (2022-11-04T14:20:40Z) - Automatic Validation of Textual Attribute Values in E-commerce Catalog
by Learning with Limited Labeled Data [61.789797281676606]
We propose a novel meta-learning latent variable approach, called MetaBridge.
It can learn transferable knowledge from a subset of categories with limited labeled data.
It can capture the uncertainty of never-seen categories with unlabeled data.
arXiv Detail & Related papers (2020-06-15T21:31:05Z) - Cross-Lingual Low-Resource Set-to-Description Retrieval for Global
E-Commerce [83.72476966339103]
Cross-lingual information retrieval is a new task in cross-border e-commerce.
We propose a novel cross-lingual matching network (CLMN) with the enhancement of context-dependent cross-lingual mapping.
Experimental results indicate that our proposed CLMN yields impressive results on the challenging task.
arXiv Detail & Related papers (2020-05-17T08:10:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.