Optimizing Gene-Based Testing for Antibiotic Resistance Prediction
- URL: http://arxiv.org/abs/2502.14919v1
- Date: Wed, 19 Feb 2025 14:34:03 GMT
- Title: Optimizing Gene-Based Testing for Antibiotic Resistance Prediction
- Authors: David Hagerman, Anna Johnning, Roman Naeem, Fredrik Kahl, Erik Kristiansson, Lennart Svensson,
- Abstract summary: Antibiotic Resistance (AR) is a critical global health challenge that necessitates the development of cost-effective, efficient, and accurate diagnostic tools.<n>Given the genetic basis of AR, techniques such as Polymerase Chain Reaction (PCR) that target specific resistance genes offer a promising approach for predictive diagnostics.<n>This study introduces GenoARM, a novel framework that integrates reinforcement learning (RL) with transformer-based models to optimize the selection of PCR gene tests and improve AR predictions.
- Score: 11.1340971514584
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Antibiotic Resistance (AR) is a critical global health challenge that necessitates the development of cost-effective, efficient, and accurate diagnostic tools. Given the genetic basis of AR, techniques such as Polymerase Chain Reaction (PCR) that target specific resistance genes offer a promising approach for predictive diagnostics using a limited set of key genes. This study introduces GenoARM, a novel framework that integrates reinforcement learning (RL) with transformer-based models to optimize the selection of PCR gene tests and improve AR predictions, leveraging observed metadata for improved accuracy. In our evaluation, we developed several high-performing baselines and compared them using publicly available datasets derived from real-world bacterial samples representing multiple clinically relevant pathogens. The results show that all evaluated methods achieve strong and reliable performance when metadata is not utilized. When metadata is introduced and the number of selected genes increases, GenoARM demonstrates superior performance due to its capacity to approximate rewards for unseen and sparse combinations. Overall, our framework represents a major advancement in optimizing diagnostic tools for AR in clinical settings.
Related papers
- scGSDR: Harnessing Gene Semantics for Single-Cell Pharmacological Profiling [5.831554646284266]
scGSDR is a model that integrates two computational pipelines grounded in the knowledge of cellular states and gene signaling pathways.<n> scGSDR enhances predictive performance by incorporating gene semantics and employs an interpretability module.<n>The model's application has extended from single-drug predictions to scenarios involving drug combinations.
arXiv Detail & Related papers (2025-02-02T15:43:20Z) - Survey and Improvement Strategies for Gene Prioritization with Large Language Models [61.24568051916653]
Large language models (LLMs) have performed well in medical exams, but their effectiveness in diagnosing rare genetic diseases has not been assessed.<n>We used multi-agent and Human Phenotype Ontology (HPO) classification to categorized patients based on phenotypes and solvability levels.<n>At baseline, GPT-4 outperformed other LLMs, achieving near 30% accuracy in ranking causal genes correctly.
arXiv Detail & Related papers (2025-01-30T23:03:03Z) - Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database [0.9055332067000195]
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality.<n> predictive models for lung metastasis inHCC remain limited in scope and clinical applicability.<n>We develop and validate an end-to-end machine learning pipeline using data from the Surveillance, Epidemiology, and End Results (SEER) database.
arXiv Detail & Related papers (2025-01-20T20:06:31Z) - Active learning for efficient discovery of optimal gene combinations in the combinatorial perturbation space [13.409130886920579]
NAIAD is an active learning framework that efficiently discovers optimal gene pairs.<n> evaluated on four CRISPR perturbation datasets totaling over 350,000 genetic interactions.<n>Our framework improves the identification of novel, effective gene combinations, enabling more efficient CRISPR library design.
arXiv Detail & Related papers (2024-11-18T19:49:51Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.
Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.
We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - Enhanced Gene Selection in Single-Cell Genomics: Pre-Filtering Synergy and Reinforced Optimization [16.491060073775884]
We introduce an iterative gene panel selection strategy applicable to clustering tasks in single-cell genomics.
Our method integrates results from other gene selection algorithms, providing valuable preliminary boundaries.
We incorporate the nature of the exploration process in reinforcement learning (RL) and its capability for continuous optimization.
arXiv Detail & Related papers (2024-06-11T16:21:33Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - TCR: A Transformer Based Deep Network for Predicting Cancer Drugs
Response [12.86640026993276]
We proposeTransformer based network for Cancer drug Response (TCR) to predict anti-cancer drug response.
By utilizing an attention mechanism, TCR is able to learn the interactions between drug atom/sub-structure and molecular signatures efficiently.
Our study highlights the prediction power of TCR and its potential value for cancer drug repurpose and precision oncology treatment.
arXiv Detail & Related papers (2022-07-10T13:01:54Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.