The Imitation Game for Educational AI
- URL: http://arxiv.org/abs/2502.15127v1
- Date: Fri, 21 Feb 2025 01:14:55 GMT
- Title: The Imitation Game for Educational AI
- Authors: Shashank Sonkar, Naiming Liu, Xinghe Chen, Richard G. Baraniuk,
- Abstract summary: We present a novel evaluation framework based on a two-phase Turing-like test.<n>In Phase 1, students provide open-ended responses to questions, revealing natural misconceptions.<n>In Phase 2, both AI and human experts, conditioned on each student's specific mistakes, generate distractors for new related questions.
- Score: 23.71250100390303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As artificial intelligence systems become increasingly prevalent in education, a fundamental challenge emerges: how can we verify if an AI truly understands how students think and reason? Traditional evaluation methods like measuring learning gains require lengthy studies confounded by numerous variables. We present a novel evaluation framework based on a two-phase Turing-like test. In Phase 1, students provide open-ended responses to questions, revealing natural misconceptions. In Phase 2, both AI and human experts, conditioned on each student's specific mistakes, generate distractors for new related questions. By analyzing whether students select AI-generated distractors at rates similar to human expert-generated ones, we can validate if the AI models student cognition. We prove this evaluation must be conditioned on individual responses - unconditioned approaches merely target common misconceptions. Through rigorous statistical sampling theory, we establish precise requirements for high-confidence validation. Our research positions conditioned distractor generation as a probe into an AI system's fundamental ability to model student thinking - a capability that enables adapting tutoring, feedback, and assessments to each student's specific needs.
Related papers
- Resurrecting Socrates in the Age of AI: A Study Protocol for Evaluating a Socratic Tutor to Support Research Question Development in Higher Education [0.0]
This protocol lays out a study grounded in constructivist learning theory to evaluate a novel AI-based Socratic Tutor.
The tutor engages students through iterative, reflective questioning, aiming to promote System 2 thinking.
This study aims to advance the understanding of how generative AI can be pedagogically aligned to support, not replace, human cognition.
arXiv Detail & Related papers (2025-04-05T00:49:20Z) - Beyond Detection: Designing AI-Resilient Assessments with Automated Feedback Tool to Foster Critical Thinking [0.0]
This research proposes a proactive, AI-resilient solution based on assessment design rather than detection.
It introduces a web-based Python tool that integrates Bloom's taxonomy with advanced natural language processing techniques.
It helps educators determine whether a task targets lower-order thinking such as recall and summarization or higher-order skills such as analysis, evaluation, and creation.
arXiv Detail & Related papers (2025-03-30T23:13:00Z) - On Benchmarking Human-Like Intelligence in Machines [77.55118048492021]
We argue that current AI evaluation paradigms are insufficient for assessing human-like cognitive capabilities.
We identify a set of key shortcomings: a lack of human-validated labels, inadequate representation of human response variability and uncertainty, and reliance on simplified and ecologically-invalid tasks.
arXiv Detail & Related papers (2025-02-27T20:21:36Z) - Thoughts Are All Over the Place: On the Underthinking of o1-Like LLMs [86.79757571440082]
Large language models (LLMs) such as OpenAI's o1 have demonstrated remarkable abilities in complex reasoning tasks.<n>We identify a phenomenon we term underthinking, where o1-like LLMs frequently switch between different reasoning thoughts.<n>We propose a decoding strategy with thought switching penalty TIP that discourages premature transitions between thoughts.
arXiv Detail & Related papers (2025-01-30T18:58:18Z) - Applying IRT to Distinguish Between Human and Generative AI Responses to Multiple-Choice Assessments [0.0]
Despite the widespread use of multiple-choice questions in assessments, the detection of AI cheating has been almost unexplored.<n>We propose a method based on the application of Item Response Theory to address this gap.<n>Our approach operates on the assumption that artificial and human intelligence exhibit different response patterns.
arXiv Detail & Related papers (2024-11-28T09:43:06Z) - LLM-based Cognitive Models of Students with Misconceptions [55.29525439159345]
This paper investigates whether Large Language Models (LLMs) can be instruction-tuned to meet this dual requirement.
We introduce MalAlgoPy, a novel Python library that generates datasets reflecting authentic student solution patterns.
Our insights enhance our understanding of AI-based student models and pave the way for effective adaptive learning systems.
arXiv Detail & Related papers (2024-10-16T06:51:09Z) - Determining the Difficulties of Students With Dyslexia via Virtual
Reality and Artificial Intelligence: An Exploratory Analysis [0.0]
The VRAIlexia project has been created to tackle this issue by proposing two different tools.
The first one has been created and is being distributed among dyslexic students in Higher Education Institutions, for the conduction of specific psychological and psychometric tests.
The second tool applies specific artificial intelligence algorithms to the data gathered via the application and other surveys.
arXiv Detail & Related papers (2024-01-15T20:26:09Z) - Assessing Student Errors in Experimentation Using Artificial
Intelligence and Large Language Models: A Comparative Study with Human Raters [9.899633398596672]
We investigate the potential of Large Language Models (LLMs) for automatically identifying student errors.
An AI system based on the GPT-3.5 and GPT-4 series was developed and tested against human raters.
Our results indicate varying levels of accuracy in error detection between the AI system and human raters.
arXiv Detail & Related papers (2023-08-11T12:03:12Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - Human Evaluation of Interpretability: The Case of AI-Generated Music
Knowledge [19.508678969335882]
We focus on evaluating AI-discovered knowledge/rules in the arts and humanities.
We present an experimental procedure to collect and assess human-generated verbal interpretations of AI-generated music theory/rules rendered as sophisticated symbolic/numeric objects.
arXiv Detail & Related papers (2020-04-15T06:03:34Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
We propose a novel paradigm of explainable active learning (XAL), by introducing techniques from the recently surging field of explainable AI (XAI) into an Active Learning setting.
Our study shows benefits of AI explanation as interfaces for machine teaching--supporting trust calibration and enabling rich forms of teaching feedback, and potential drawbacks--anchoring effect with the model judgment and cognitive workload.
arXiv Detail & Related papers (2020-01-24T22:52:18Z) - R2DE: a NLP approach to estimating IRT parameters of newly generated
questions [3.364554138758565]
R2DE is a model capable of assessing newly generated multiple-choice questions by looking at the text of the question.
In particular, it can estimate the difficulty and the discrimination of each question.
arXiv Detail & Related papers (2020-01-21T14:31:01Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.