Scale-Free Graph-Language Models
- URL: http://arxiv.org/abs/2502.15189v1
- Date: Fri, 21 Feb 2025 03:41:43 GMT
- Title: Scale-Free Graph-Language Models
- Authors: Jianglin Lu, Yixuan Liu, Yitian Zhang, Yun Fu,
- Abstract summary: Graph-language models (GLMs) have demonstrated great potential in graph-based semi-supervised learning.<n>This paper introduces a novel GLM that integrates graph generation and text embedding within a unified framework.
- Score: 44.283149785253286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-language models (GLMs) have demonstrated great potential in graph-based semi-supervised learning. A typical GLM consists of two key stages: graph generation and text embedding, which are usually implemented by inferring a latent graph and finetuning a language model (LM), respectively. However, the former often relies on artificial assumptions about the underlying edge distribution, while the latter requires extensive data annotations. To tackle these challenges, this paper introduces a novel GLM that integrates graph generation and text embedding within a unified framework. Specifically, for graph generation, we leverage an inherent characteristic of real edge distribution--the scale-free property--as a structural prior. We unexpectedly find that this natural property can be effectively approximated by a simple k-nearest neighbor (KNN) graph. For text embedding, we develop a graph-based pseudo-labeler that utilizes scale-free graphs to provide complementary supervision for improved LM finetuning. Extensive experiments on representative datasets validate our findings on the scale-free structural approximation of KNN graphs and demonstrate the effectiveness of integrating graph generation and text embedding with a real structural prior. Our code is available at https://github.com/Jianglin954/SFGL.
Related papers
- LL4G: Self-Supervised Dynamic Optimization for Graph-Based Personality Detection [15.21447289641142]
This paper introduces LL4G, a self-supervised framework to optimize graph neural networks (GNNs)
LL4G is a self-supervised framework leveraging large language models (LLMs) to optimize graph neural networks (GNNs)
Experimental results on Kaggle and Pandora datasets show LL4G outperforms state-of-the-art models.
arXiv Detail & Related papers (2025-04-02T21:46:30Z) - Can LLMs Convert Graphs to Text-Attributed Graphs? [35.53046810556242]
We propose Topology-Aware Node description Synthesis (TANS) to convert existing graphs into text-attributed graphs.
We evaluate our TANS on text-rich, text-limited, and text-free graphs, demonstrating its applicability.
arXiv Detail & Related papers (2024-12-13T13:32:59Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - Graph Language Models [18.75364157933661]
We introduce a novel LM type, the Graph Language Model (GLM), that integrates the strengths of both approaches and mitigates their weaknesses.
We design the GLM's architecture to incorporate graph biases, thereby promoting effective knowledge distribution within the graph.
Empirical evaluations on relation classification tasks show that GLM embeddings surpass both LM- and GNN-based baselines in supervised and zero-shot setting.
arXiv Detail & Related papers (2024-01-13T16:09:49Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
Graph Neural Networks (GNNs) have evolved to understand graph structures.
To enhance robustness, self-supervised learning (SSL) has become a vital tool for data augmentation.
Our research tackles this by advancing graph model generalization in zero-shot learning environments.
arXiv Detail & Related papers (2023-10-19T06:17:46Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.