FlipConcept: Tuning-Free Multi-Concept Personalization for Text-to-Image Generation
- URL: http://arxiv.org/abs/2502.15203v2
- Date: Wed, 16 Jul 2025 02:44:24 GMT
- Title: FlipConcept: Tuning-Free Multi-Concept Personalization for Text-to-Image Generation
- Authors: Young Beom Woo, Sun Eung Kim, Seong-Whan Lee,
- Abstract summary: We propose FlipConcept, a novel approach that seamlessly integrates multiple personalized concepts into a single image.<n>We introduce guided appearance attention, mask-guided noise mixing, and background dilution to minimize concept leakage.<n>Despite not requiring tuning, our method outperforms existing models in both single and multiple personalized concept inference.
- Score: 26.585985828583304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating multiple personalized concepts into a single image has recently gained attention in text-to-image (T2I) generation. However, existing methods often suffer from performance degradation in complex scenes due to distortions in non-personalized regions and the need for additional fine-tuning, limiting their practicality. To address this issue, we propose FlipConcept, a novel approach that seamlessly integrates multiple personalized concepts into a single image without requiring additional tuning. We introduce guided appearance attention to enhance the visual fidelity of personalized concepts. Additionally, we introduce mask-guided noise mixing to protect non-personalized regions during concept integration. Lastly, we apply background dilution to minimize concept leakage, i.e., the undesired blending of personalized concepts with other objects in the image. In our experiments, we demonstrate that the proposed method, despite not requiring tuning, outperforms existing models in both single and multiple personalized concept inference. These results demonstrate the effectiveness and practicality of our approach for scalable, high-quality multi-concept personalization.
Related papers
- Mod-Adapter: Tuning-Free and Versatile Multi-concept Personalization via Modulation Adapter [52.08332620725473]
We propose a tuning-free method for multi-concept personalization that can effectively customize both object and abstract concepts without test-time fine-tuning.<n>Our method achieves state-of-the-art performance in multi-concept personalization, supported by quantitative, qualitative, and human evaluations.
arXiv Detail & Related papers (2025-05-24T09:21:32Z) - Concept Conductor: Orchestrating Multiple Personalized Concepts in Text-to-Image Synthesis [14.21719970175159]
Concept Conductor is designed to ensure visual fidelity and correct layout in multi-concept customization.
We present a concept injection technique that employs shape-aware masks to specify the generation area for each concept.
Our method supports the combination of any number of concepts and maintains high fidelity even when dealing with visually similar concepts.
arXiv Detail & Related papers (2024-08-07T08:43:58Z) - AttenCraft: Attention-guided Disentanglement of Multiple Concepts for Text-to-Image Customization [4.544788024283586]
AttenCraft is an attention-guided method for multiple concept disentanglement.
We introduce Uniform sampling and Reweighted sampling schemes to alleviate the non-synchronicity of feature acquisition from different concepts.
Our method outperforms baseline models in terms of image-alignment, and behaves comparably on text-alignment.
arXiv Detail & Related papers (2024-05-28T08:50:14Z) - FreeCustom: Tuning-Free Customized Image Generation for Multi-Concept Composition [49.2208591663092]
FreeCustom is a tuning-free method to generate customized images of multi-concept composition based on reference concepts.
We introduce a new multi-reference self-attention (MRSA) mechanism and a weighted mask strategy.
Our method outperforms or performs on par with other training-based methods in terms of multi-concept composition and single-concept customization.
arXiv Detail & Related papers (2024-05-22T17:53:38Z) - MC$^2$: Multi-concept Guidance for Customized Multi-concept Generation [59.00909718832648]
We propose MC$2$, a novel approach for multi-concept customization.<n>By adaptively refining attention weights between visual and textual tokens, our method ensures that image regions accurately correspond to their associated concepts.<n>Experiments demonstrate that MC$2$ outperforms training-based methods in terms of prompt-reference alignment.
arXiv Detail & Related papers (2024-04-08T07:59:04Z) - Concept Weaver: Enabling Multi-Concept Fusion in Text-to-Image Models [85.14042557052352]
We introduce Concept Weaver, a method for composing customized text-to-image diffusion models at inference time.
We show that Concept Weaver can generate multiple custom concepts with higher identity fidelity compared to alternative approaches.
arXiv Detail & Related papers (2024-04-05T06:41:27Z) - Tuning-Free Image Customization with Image and Text Guidance [65.9504243633169]
We introduce a tuning-free framework for simultaneous text-image-guided image customization.
Our approach preserves the semantic features of the reference image subject while allowing modification of detailed attributes based on text descriptions.
Our approach outperforms previous methods in both human and quantitative evaluations.
arXiv Detail & Related papers (2024-03-19T11:48:35Z) - OMG: Occlusion-friendly Personalized Multi-concept Generation in Diffusion Models [47.63060402915307]
OMG is a framework designed to seamlessly integrate multiple concepts within a single image.
OMG exhibits superior performance in multi-concept personalization.
LoRA models on civitai.com can be exploited directly.
arXiv Detail & Related papers (2024-03-16T17:30:15Z) - Pick-and-Draw: Training-free Semantic Guidance for Text-to-Image
Personalization [56.12990759116612]
Pick-and-Draw is a training-free semantic guidance approach to boost identity consistency and generative diversity for personalization methods.
The proposed approach can be applied to any personalized diffusion models and requires as few as a single reference image.
arXiv Detail & Related papers (2024-01-30T05:56:12Z) - Multi-Concept T2I-Zero: Tweaking Only The Text Embeddings and Nothing
Else [75.6806649860538]
We consider a more ambitious goal: natural multi-concept generation using a pre-trained diffusion model.
We observe concept dominance and non-localized contribution that severely degrade multi-concept generation performance.
We design a minimal low-cost solution that overcomes the above issues by tweaking the text embeddings for more realistic multi-concept text-to-image generation.
arXiv Detail & Related papers (2023-10-11T12:05:44Z) - Break-A-Scene: Extracting Multiple Concepts from a Single Image [80.47666266017207]
We introduce the task of textual scene decomposition.
We propose augmenting the input image with masks that indicate the presence of target concepts.
We then present a novel two-phase customization process.
arXiv Detail & Related papers (2023-05-25T17:59:04Z) - Designing an Encoder for Fast Personalization of Text-to-Image Models [57.62449900121022]
We propose an encoder-based domain-tuning approach for text-to-image personalization.
We employ two components: First, an encoder that takes as an input a single image of a target concept from a given domain.
Second, a set of regularized weight-offsets for the text-to-image model that learn how to effectively ingest additional concepts.
arXiv Detail & Related papers (2023-02-23T18:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.