CopyJudge: Automated Copyright Infringement Identification and Mitigation in Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2502.15278v1
- Date: Fri, 21 Feb 2025 08:09:07 GMT
- Title: CopyJudge: Automated Copyright Infringement Identification and Mitigation in Text-to-Image Diffusion Models
- Authors: Shunchang Liu, Zhuan Shi, Lingjuan Lyu, Yaochu Jin, Boi Faltings,
- Abstract summary: We propose CopyJudge, an automated copyright infringement identification framework.<n>We employ an abstraction-filtration-comparison test framework with multi-LVLM debate to assess the likelihood of infringement.<n>Based on the judgments, we introduce a general LVLM-based mitigation strategy.
- Score: 58.58208005178676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assessing whether AI-generated images are substantially similar to copyrighted works is a crucial step in resolving copyright disputes. In this paper, we propose CopyJudge, an automated copyright infringement identification framework that leverages large vision-language models (LVLMs) to simulate practical court processes for determining substantial similarity between copyrighted images and those generated by text-to-image diffusion models. Specifically, we employ an abstraction-filtration-comparison test framework with multi-LVLM debate to assess the likelihood of infringement and provide detailed judgment rationales. Based on the judgments, we further introduce a general LVLM-based mitigation strategy that automatically optimizes infringing prompts by avoiding sensitive expressions while preserving the non-infringing content. Besides, our approach can be enhanced by exploring non-infringing noise vectors within the diffusion latent space via reinforcement learning, even without modifying the original prompts. Experimental results show that our identification method achieves comparable state-of-the-art performance, while offering superior generalization and interpretability across various forms of infringement, and that our mitigation method could more effectively mitigate memorization and IP infringement without losing non-infringing expressions.
Related papers
- Enhancing Privacy-Utility Trade-offs to Mitigate Memorization in Diffusion Models [62.979954692036685]
We introduce PRSS, which refines the classifier-free guidance approach in diffusion models by integrating prompt re-anchoring and semantic prompt search.
Our approach consistently improves the privacy-utility trade-off, establishing a new state-of-the-art.
arXiv Detail & Related papers (2025-04-25T02:51:23Z) - Certified Mitigation of Worst-Case LLM Copyright Infringement [46.571805194176825]
"copyright takedown" methods are aimed at preventing models from generating content substantially similar to copyrighted ones.
We propose BloomScrub, a remarkably simple yet highly effective inference-time approach that provides certified copyright takedown.
Our results suggest that lightweight, inference-time methods can be surprisingly effective for copyright prevention.
arXiv Detail & Related papers (2025-04-22T17:16:53Z) - RLCP: A Reinforcement Learning-based Copyright Protection Method for Text-to-Image Diffusion Model [42.77851688874563]
We propose a Reinforcement Learning-based Copyright Protection(RLCP) method for Text-to-Image Diffusion Model.<n>Our approach minimizes the generation of copyright-infringing content while maintaining the quality of the model-generated dataset.
arXiv Detail & Related papers (2024-08-29T15:39:33Z) - Can Watermarking Large Language Models Prevent Copyrighted Text Generation and Hide Training Data? [62.72729485995075]
We investigate the effectiveness of watermarking as a deterrent against the generation of copyrighted texts.
We find that watermarking adversely affects the success rate of Membership Inference Attacks (MIAs)
We propose an adaptive technique to improve the success rate of a recent MIA under watermarking.
arXiv Detail & Related papers (2024-07-24T16:53:09Z) - CPR: Retrieval Augmented Generation for Copyright Protection [101.15323302062562]
We introduce CopyProtected generation with Retrieval (CPR), a new method for RAG with strong copyright protection guarantees.
CPR allows to condition the output of diffusion models on a set of retrieved images.
We prove that CPR satisfies Near Access Freeness (NAF) which bounds the amount of information an attacker may be able to extract from the generated images.
arXiv Detail & Related papers (2024-03-27T18:09:55Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
Diffusion-based image generation models can create artistic images that mimic the style of an artist or maliciously edit the original images for fake content.
Several attempts have been made to protect the original images from such unauthorized data usage by adding imperceptible perturbations.
In this work, we introduce a purification perturbation platform, named IMPRESS, to evaluate the effectiveness of imperceptible perturbations as a protective measure.
arXiv Detail & Related papers (2023-10-30T03:33:41Z) - CopyScope: Model-level Copyright Infringement Quantification in the
Diffusion Workflow [6.6282087165087304]
Copyright infringement quantification is the primary and challenging step towards AI-generated image copyright traceability.
We propose CopyScope, a new framework to quantify the infringement of AI-generated images from the model level.
arXiv Detail & Related papers (2023-10-13T13:08:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.