Time Warp: The Gap Between Developers' Ideal vs Actual Workweeks in an AI-Driven Era
- URL: http://arxiv.org/abs/2502.15287v1
- Date: Fri, 21 Feb 2025 08:29:49 GMT
- Title: Time Warp: The Gap Between Developers' Ideal vs Actual Workweeks in an AI-Driven Era
- Authors: Sukrit Kumar, Drishti Goel, Thomas Zimmermann, Brian Houck, B. Ashok, Chetan Bansal,
- Abstract summary: We present the findings from a survey of 484 software developers at Microsoft.<n>Our analysis reveals significant deviations between a developer's ideal workweek and their actual workweek.<n>Given the growing adoption of AI tools in software engineering, we identify specific tasks and areas that could be strong candidates for automation.
- Score: 8.811930702380115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software developers balance a variety of different tasks in a workweek, yet the allocation of time often differs from what they consider ideal. Identifying and addressing these deviations is crucial for organizations aiming to enhance the productivity and well-being of the developers. In this paper, we present the findings from a survey of 484 software developers at Microsoft, which aims to identify the key differences between how developers would like to allocate their time during an ideal workweek versus their actual workweek. Our analysis reveals significant deviations between a developer's ideal workweek and their actual workweek, with a clear correlation: as the gap between these two workweeks widens, we observe a decline in both productivity and satisfaction. By examining these deviations in specific activities, we assess their direct impact on the developers' satisfaction and productivity. Additionally, given the growing adoption of AI tools in software engineering, both in the industry and academia, we identify specific tasks and areas that could be strong candidates for automation. In this paper, we make three key contributions: 1) We quantify the impact of workweek deviations on developer productivity and satisfaction 2) We identify individual tasks that disproportionately affect satisfaction and productivity 3) We provide actual data-driven insights to guide future AI automation efforts in software engineering, aligning them with the developers' requirements and ideal workflows for maximizing their productivity and satisfaction.
Related papers
- Causally Aligned Curriculum Learning [69.11672390876763]
This paper studies the problem of curriculum RL through causal lenses.
We derive a sufficient graphical condition characterizing causally aligned source tasks.
We develop an efficient algorithm to generate a causally aligned curriculum.
arXiv Detail & Related papers (2025-03-21T02:20:38Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Towards Decoding Developer Cognition in the Age of AI Assistants [9.887133861477233]
We propose a controlled observational study combining physiological measurements (EEG and eye tracking) with interaction data to examine developers' use of AI-assisted programming tools.<n>We will recruit professional developers to complete programming tasks both with and without AI assistance while measuring their cognitive load and task completion time.
arXiv Detail & Related papers (2025-01-05T23:25:21Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
We build a self-contained environment with data that mimics a small software company environment.<n>We find that with the most competitive agent, 24% of the tasks can be completed autonomously.<n>This paints a nuanced picture on task automation with LM agents.
arXiv Detail & Related papers (2024-12-18T18:55:40Z) - Dear Diary: A randomized controlled trial of Generative AI coding tools in the workplace [2.5280615594444567]
Generative AI coding tools are relatively new, and their impact on developers extends beyond traditional coding metrics.
This study aims to illuminate developers' preexisting beliefs about generative AI tools, their self perceptions, and how regular use of these tools may alter these beliefs.
Our findings reveal that the introduction and sustained use of generative AI coding tools significantly increases developers' perceptions of these tools as both useful and enjoyable.
arXiv Detail & Related papers (2024-10-24T00:07:27Z) - How much does AI impact development speed? An enterprise-based randomized controlled trial [8.759453531975668]
We estimate the impact of three AI features on the time developers spent on a complex, enterprise-grade task.
We also found an interesting effect whereby developers who spend more hours on code-related activities per day were faster with AI.
arXiv Detail & Related papers (2024-10-16T18:31:14Z) - Transforming Software Development: Evaluating the Efficiency and Challenges of GitHub Copilot in Real-World Projects [0.0]
GitHub Copilot is an AI-powered coding assistant.
This study evaluates the efficiency gains, areas for improvement, and emerging challenges of using GitHub Copilot.
arXiv Detail & Related papers (2024-06-25T19:51:21Z) - Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking [59.87055275344965]
Job-SDF is a dataset designed to train and benchmark job-skill demand forecasting models.<n>Based on 10.35 million public job advertisements collected from major online recruitment platforms in China between 2021 and 2023.<n>Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels.
arXiv Detail & Related papers (2024-06-17T07:22:51Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
We present insights from SE researchers and practitioners on challenges and solutions regarding diversity and inclusion in SE.
We share potential utopian and dystopian visions of the future and provide future research directions and implications for academia and industry.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - Turtle Score -- Similarity Based Developer Analyzer [0.0]
This research aims to comprehend, analyze and automatically produce convincing outcomes to find a candidate who perfectly fits right in the company.
Data is examined and collected for each employee who works in the IT domain focusing on their performance measure.
It's been proven that the efficiency and capability of a particular worker go higher when working with a person of a similar personality.
arXiv Detail & Related papers (2022-05-10T13:22:11Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
We argue that ethical considerations need to be embedded into the (agile) software development process.
We put emphasis on the possibility to implement ethical deliberations in already existing and well established agile software development processes.
arXiv Detail & Related papers (2021-07-15T11:14:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.