Evaluate with the Inverse: Efficient Approximation of Latent Explanation Quality Distribution
- URL: http://arxiv.org/abs/2502.15403v1
- Date: Fri, 21 Feb 2025 12:04:01 GMT
- Title: Evaluate with the Inverse: Efficient Approximation of Latent Explanation Quality Distribution
- Authors: Carlos Eiras-Franco, Anna Hedström, Marina M. -C. Höhne,
- Abstract summary: XAI practitioners rely on measures to gauge the quality of such explanations.<n>Traditionally, the quality of an explanation has been assessed by comparing it to a randomly generated counterpart.<n>This paper introduces an alternative: the Quality Gap Estimate (QGE)
- Score: 3.0658381192498907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Obtaining high-quality explanations of a model's output enables developers to identify and correct biases, align the system's behavior with human values, and ensure ethical compliance. Explainable Artificial Intelligence (XAI) practitioners rely on specific measures to gauge the quality of such explanations. These measures assess key attributes, such as how closely an explanation aligns with a model's decision process (faithfulness), how accurately it pinpoints the relevant input features (localization), and its consistency across different cases (robustness). Despite providing valuable information, these measures do not fully address a critical practitioner's concern: how does the quality of a given explanation compare to other potential explanations? Traditionally, the quality of an explanation has been assessed by comparing it to a randomly generated counterpart. This paper introduces an alternative: the Quality Gap Estimate (QGE). The QGE method offers a direct comparison to what can be viewed as the `inverse' explanation, one that conceptually represents the antithesis of the original explanation. Our extensive testing across multiple model architectures, datasets, and established quality metrics demonstrates that the QGE method is superior to the traditional approach. Furthermore, we show that QGE enhances the statistical reliability of these quality assessments. This advance represents a significant step toward a more insightful evaluation of explanations that enables a more effective inspection of a model's behavior.
Related papers
- AI-Generated Image Quality Assessment Based on Task-Specific Prompt and Multi-Granularity Similarity [62.00987205438436]
We propose a novel quality assessment method for AIGIs named TSP-MGS.
It designs task-specific prompts and measures multi-granularity similarity between AIGIs and the prompts.
Experiments on the commonly used AGIQA-1K and AGIQA-3K benchmarks demonstrate the superiority of the proposed TSP-MGS.
arXiv Detail & Related papers (2024-11-25T04:47:53Z) - BEExAI: Benchmark to Evaluate Explainable AI [0.9176056742068812]
We propose BEExAI, a benchmark tool that allows large-scale comparison of different post-hoc XAI methods.
We argue that the need for a reliable way of measuring the quality and correctness of explanations is becoming critical.
arXiv Detail & Related papers (2024-07-29T11:21:17Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - On the stability, correctness and plausibility of visual explanation
methods based on feature importance [0.0]
We study the articulation between the stability, correctness and plausibility of explanations based on feature importance for image classifiers.
We show that the existing metrics for evaluating these properties do not always agree, raising the issue of what constitutes a good evaluation metric for explanations.
arXiv Detail & Related papers (2023-10-25T08:59:21Z) - The Meta-Evaluation Problem in Explainable AI: Identifying Reliable
Estimators with MetaQuantus [10.135749005469686]
One of the unsolved challenges in the field of Explainable AI (XAI) is determining how to most reliably estimate the quality of an explanation method.
We address this issue through a meta-evaluation of different quality estimators in XAI.
Our novel framework, MetaQuantus, analyses two complementary performance characteristics of a quality estimator.
arXiv Detail & Related papers (2023-02-14T18:59:02Z) - VisFIS: Visual Feature Importance Supervision with
Right-for-the-Right-Reason Objectives [84.48039784446166]
We show that model FI supervision can meaningfully improve VQA model accuracy as well as performance on several Right-for-the-Right-Reason metrics.
Our best performing method, Visual Feature Importance Supervision (VisFIS), outperforms strong baselines on benchmark VQA datasets.
Predictions are more accurate when explanations are plausible and faithful, and not when they are plausible but not faithful.
arXiv Detail & Related papers (2022-06-22T17:02:01Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
We introduce the methodology of Faithfulness-through-Counterfactuals.
It generates a counterfactual hypothesis based on the logical predicates expressed in the explanation.
It then evaluates if the model's prediction on the counterfactual is consistent with that expressed logic.
arXiv Detail & Related papers (2022-05-25T03:40:59Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - A Meta Survey of Quality Evaluation Criteria in Explanation Methods [0.5801044612920815]
Explanation methods and their evaluation have become a significant issue in explainable artificial intelligence (XAI)
Since the most accurate AI models are opaque with low transparency and comprehensibility, explanations are essential for bias detection and control of uncertainty.
There are a plethora of criteria to choose from when evaluating explanation method quality.
arXiv Detail & Related papers (2022-03-25T22:24:21Z) - Diagnostics-Guided Explanation Generation [32.97930902104502]
Explanations shed light on a machine learning model's rationales and can aid in identifying deficiencies in its reasoning process.
We show how to optimise for several diagnostic properties when training a model to generate sentence-level explanations.
arXiv Detail & Related papers (2021-09-08T16:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.