Critical Unstable Qubits: an Application to $B^0\bar{B}^0$-Meson System
- URL: http://arxiv.org/abs/2502.15625v2
- Date: Fri, 11 Apr 2025 11:59:54 GMT
- Title: Critical Unstable Qubits: an Application to $B^0\bar{B}^0$-Meson System
- Authors: Dimitrios Karamitros, Thomas McKelvey, Apostolos Pilaftsis,
- Abstract summary: We extend our previous work on a class of unstable qubits which we have identified recently and called them Critical Unstable Qubits (CUQs)<n>The characteristic property of CUQs is that the energy-level and decay-width vectors, $bf E$ and $bf Gamma$, are to one another, and the key parameter $r = |bf Gamma|/|2bf E|$ is less than 1.<n>We define anharmonicity observables that quantify the degree of non-sinusoidal oscillation of a CU
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We extend our previous work on a novel class of unstable qubits which we have identified recently and called them Critical Unstable Qubits (CUQs). The characteristic property of CUQs is that the energy-level and decay-width vectors, ${\bf E}$ and ${\bf \Gamma}$, are orthogonal to one another, and the key parameter $r = |{\bf \Gamma}|/|2{\bf E}|$ is less than 1. Most remarkably, CUQs exhibit two atypical behaviours: (i) they display coherence-decoherence oscillations in a co-decaying frame of the system described by a unit Bloch vector ${\bf b}$, and (ii) the unit Bloch vector ${\bf b}$ describing a pure CUQ sweeps out unequal areas during equal intervals of time, while rotating about the vector ${\bf E}$. The latter anharmonic phenomenon emerges beyond the usual oscillatory pattern due to the energy-level difference of the two-level quantum system, which governs an ordinary qubit. By making use of a Fourier series decomposition, we define anharmonicity observables that quantify the degree of non-sinusoidal oscillation of a CUQ. We apply the results of our formalism to the $B^0\bar{B}^0$-meson system and derive, for the first time, generic upper limits on these new observables.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.<n>This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.<n>We show how to lift classical slow mixing results in the presence of a transverse field using Poisson Feynman-Kac techniques.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Tunable quantum criticality and pseudocriticality across the fixed-point
annihilation in the anisotropic spin-boson model [0.26107298043931204]
We study the nontrivial renormalization-group scenario of fixed-point annihilation in spin-boson models.
We find a tunable transition between two localized phases that can be continuous or strongly first-order.
We also find scaling behavior at the symmetry-enhanced first-order transition, for which the inverse correlation-length exponent is given by the bath exponent.
arXiv Detail & Related papers (2024-03-04T19:00:07Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Schrieffer-Wolff transformation for non-Hermitian systems: application
for $\mathcal{PT}$-symmetric circuit QED [0.0]
We develop the generalized Schrieffer-Wolff transformation and derive the effective Hamiltonian suitable for various quasi-degenerate textitnon-Hermitian systems.
We show that non-hermiticity mixes the "dark" and the "bright" states, which has a direct experimental consequence.
arXiv Detail & Related papers (2023-09-18T14:50:29Z) - Small-time controllability for the nonlinear Schr\"odinger equation on
$\mathbb{R}^N$ via bilinear electromagnetic fields [55.2480439325792]
We address the small-time controllability problem for a nonlinear Schr"odinger equation (NLS) on $mathbbRN$ in the presence of magnetic and electric external fields.
In detail, we study when it is possible to control the dynamics of (NLS) as fast as desired via sufficiently large control signals.
arXiv Detail & Related papers (2023-07-28T21:30:44Z) - Quantum and classical low-degree learning via a dimension-free Remez
inequality [52.12931955662553]
We show a new way to relate functions on the hypergrid to their harmonic extensions over the polytorus.
We show the supremum of a function $f$ over products of the cyclic group $exp(2pi i k/K)_k=1K$.
We extend to new spaces a recent line of work citeEI22, CHP, VZ22 that gave similarly efficient methods for learning low-degrees on hypercubes and observables on qubits.
arXiv Detail & Related papers (2023-01-04T04:15:40Z) - Quantum Coherence of Critical Unstable Two-Level Systems [0.0]
We study in detail the dynamics of unstable two-level quantum systems by adopting the Bloch-sphere formalism of qubits.
We find that critical unstable qubit systems exhibit atypical behaviours like coherence--decoherence oscillations.
arXiv Detail & Related papers (2022-12-12T16:56:33Z) - Linear Response for pseudo-Hermitian Hamiltonian Systems: Application to
PT-Symmetric Qubits [0.0]
We develop the linear response theory formulation suitable for application to various pHH systems.
We apply our results to two textitPT-symmetric non-Hermitian quantum systems.
arXiv Detail & Related papers (2022-06-18T10:05:30Z) - Analyticity constraints bound the decay of the spectral form factor [0.0]
Quantum chaos cannot develop faster than $lambda leq 2 pi/(hbar beta)$ for systems in thermal equilibrium.
We show that similar constraints also bound the decay of the spectral form factor (SFF)
The relation of the derived bound with other known bounds, including quantum speed limits, is discussed.
arXiv Detail & Related papers (2022-02-23T19:00:00Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.