AutoToM: Automated Bayesian Inverse Planning and Model Discovery for Open-ended Theory of Mind
- URL: http://arxiv.org/abs/2502.15676v1
- Date: Fri, 21 Feb 2025 18:57:52 GMT
- Title: AutoToM: Automated Bayesian Inverse Planning and Model Discovery for Open-ended Theory of Mind
- Authors: Zhining Zhang, Chuanyang Jin, Mung Yao Jia, Tianmin Shu,
- Abstract summary: Theory of Mind (ToM) is key to developing socially intelligent agents.<n>Current approaches to Theory of Mind reasoning rely on prompting Large Language Models (LLMs)<n>We introduce AutoToM, an automated Bayesian Theory of Mind method for achieving open-ended machine Theory of Mind.
- Score: 8.619889123184649
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Theory of Mind (ToM), the ability to understand people's mental variables based on their behavior, is key to developing socially intelligent agents. Current approaches to Theory of Mind reasoning either rely on prompting Large Language Models (LLMs), which are prone to systematic errors, or use rigid, handcrafted Bayesian Theory of Mind (BToM) models, which are more robust but cannot generalize across different domains. In this work, we introduce AutoToM, an automated Bayesian Theory of Mind method for achieving open-ended machine Theory of Mind. AutoToM can operate in any domain, infer any mental variable, and conduct robust Theory of Mind reasoning of any order. Given a Theory of Mind inference problem, AutoToM first proposes an initial BToM model. It then conducts automated Bayesian inverse planning based on the proposed model, leveraging an LLM as the backend. Based on the uncertainty of the inference, it iteratively refines the model, by introducing additional mental variables and/or incorporating more timesteps in the context. Empirical evaluations across multiple Theory of Mind benchmarks demonstrate that AutoToM consistently achieves state-of-the-art performance, offering a scalable, robust, and interpretable approach to machine Theory of Mind.
Related papers
- Hypothesis-Driven Theory-of-Mind Reasoning for Large Language Models [76.6028674686018]
We introduce thought-tracing, an inference-time reasoning algorithm to trace the mental states of agents.<n>Our algorithm is modeled after the Bayesian theory-of-mind framework.<n>We evaluate thought-tracing on diverse theory-of-mind benchmarks, demonstrating significant performance improvements.
arXiv Detail & Related papers (2025-02-17T15:08:50Z) - Decompose-ToM: Enhancing Theory of Mind Reasoning in Large Language Models through Simulation and Task Decomposition [2.089191490381739]
Theory of Mind (ToM) is the ability to understand and reflect on the mental states of others.
Large Language Models (LLMs) possess only a rudimentary understanding of ToM.
We propose Decompose-ToM'': an LLM-based inference algorithm that improves model performance on complex ToM tasks.
arXiv Detail & Related papers (2025-01-15T18:44:01Z) - Explore Theory of Mind: Program-guided adversarial data generation for theory of mind reasoning [88.68573198200698]
We introduce ExploreToM, the first framework to allow large-scale generation of diverse and challenging theory of mind data.
Our approach leverages an A* search over a custom domain-specific language to produce complex story structures and novel, diverse, yet plausible scenarios.
Our evaluation reveals that state-of-the-art LLMs, such as Llama-3.1-70B and GPT-4o, show accuracies as low as 0% and 9% on ExploreToM-generated data.
arXiv Detail & Related papers (2024-12-12T21:29:00Z) - NegotiationToM: A Benchmark for Stress-testing Machine Theory of Mind on Negotiation Surrounding [55.38254464415964]
Theory of mind evaluations currently focuses on testing models using machine-generated data or game settings prone to shortcuts and spurious correlations.
We introduce NegotiationToM, a new benchmark designed to stress-test machine ToM in real-world negotiation surrounding covered multi-dimensional mental states.
arXiv Detail & Related papers (2024-04-21T11:51:13Z) - MMToM-QA: Multimodal Theory of Mind Question Answering [80.87550820953236]
Theory of Mind (ToM) is an essential ingredient for developing machines with human-level social intelligence.
Recent machine learning models, particularly large language models, seem to show some aspects of ToM understanding.
Human ToM, on the other hand, is more than video or text understanding.
People can flexibly reason about another person's mind based on conceptual representations extracted from any available data.
arXiv Detail & Related papers (2024-01-16T18:59:24Z) - Think Twice: Perspective-Taking Improves Large Language Models'
Theory-of-Mind Capabilities [63.90227161974381]
SimToM is a novel prompting framework inspired by Simulation Theory's notion of perspective-taking.
Our approach, which requires no additional training and minimal prompt-tuning, shows substantial improvement over existing methods.
arXiv Detail & Related papers (2023-11-16T22:49:27Z) - Minding Language Models' (Lack of) Theory of Mind: A Plug-and-Play
Multi-Character Belief Tracker [72.09076317574238]
ToM is a plug-and-play approach to investigate the belief states of characters in reading comprehension.
We show that ToM enhances off-the-shelf neural network theory mind in a zero-order setting while showing robust out-of-distribution performance compared to supervised baselines.
arXiv Detail & Related papers (2023-06-01T17:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.