Regulating Multifunctionality
- URL: http://arxiv.org/abs/2502.15715v1
- Date: Sun, 26 Jan 2025 00:50:27 GMT
- Title: Regulating Multifunctionality
- Authors: Cary Coglianese, Colton R. Crum,
- Abstract summary: Foundation models and generative artificial intelligence (AI) exacerbate a core regulatory challenge associated with AI: its heterogeneity.<n> prescriptive, one-size-fits-all regulation will not be a viable option.<n>Even performance standards and ex post liability are unlikely to be strong candidates for responding to multifunctional AI's risks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Foundation models and generative artificial intelligence (AI) exacerbate a core regulatory challenge associated with AI: its heterogeneity. By their very nature, foundation models and generative AI can perform multiple functions for their users, thus presenting a vast array of different risks. This multifunctionality means that prescriptive, one-size-fits-all regulation will not be a viable option. Even performance standards and ex post liability - regulatory approaches that usually afford flexibility - are unlikely to be strong candidates for responding to multifunctional AI's risks, given challenges in monitoring and enforcement. Regulators will do well instead to promote proactive risk management on the part of developers and users by using management-based regulation, an approach that has proven effective in other contexts of heterogeneity. Regulators will also need to maintain ongoing vigilance and agility. More than in other contexts, regulators of multifunctional AI will need sufficient resources, top human talent and leadership, and organizational cultures committed to regulatory excellence.
Related papers
- Do LLMs trust AI regulation? Emerging behaviour of game-theoretic LLM agents [61.132523071109354]
This paper investigates the interplay between AI developers, regulators and users, modelling their strategic choices under different regulatory scenarios.
Our research identifies emerging behaviours of strategic AI agents, which tend to adopt more "pessimistic" stances than pure game-theoretic agents.
arXiv Detail & Related papers (2025-04-11T15:41:21Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems.
LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations.
arXiv Detail & Related papers (2025-03-20T22:37:15Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.
Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Decentralized Governance of Autonomous AI Agents [0.0]
ETHOS is a decentralized governance (DeGov) model leveraging Web3 technologies, including blockchain, smart contracts, and decentralized autonomous organizations (DAOs)
It establishes a global registry for AI agents, enabling dynamic risk classification, proportional oversight, and automated compliance monitoring.
By integrating philosophical principles of rationality, ethical grounding, and goal alignment, ETHOS aims to create a robust research agenda for promoting trust, transparency, and participatory governance.
arXiv Detail & Related papers (2024-12-22T18:01:49Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - From Principles to Rules: A Regulatory Approach for Frontier AI [2.1764247401772705]
Regulators may require frontier AI developers to adopt safety measures.
The requirements could be formulated as high-level principles or specific rules.
These regulatory approaches, known as 'principle-based' and 'rule-based' regulation, have complementary strengths and weaknesses.
arXiv Detail & Related papers (2024-07-10T01:45:15Z) - Generative AI Needs Adaptive Governance [0.0]
generative AI challenges the notions of governance, trust, and human agency.
This paper argues that generative AI calls for adaptive governance.
We outline actors, roles, as well as both shared and actors-specific policy activities.
arXiv Detail & Related papers (2024-06-06T23:47:14Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Applications of Generative AI (Gen AI) are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about the potential risks of the technology, and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source generative AI.
arXiv Detail & Related papers (2024-05-14T13:37:36Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Frontier AI Regulation: Managing Emerging Risks to Public Safety [15.85618115026625]
"Frontier AI" models could possess dangerous capabilities sufficient to pose severe risks to public safety.
Industry self-regulation is an important first step.
We propose an initial set of safety standards.
arXiv Detail & Related papers (2023-07-06T17:03:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.