FairKV: Balancing Per-Head KV Cache for Fast Multi-GPU Inference
- URL: http://arxiv.org/abs/2502.15804v1
- Date: Wed, 19 Feb 2025 06:14:27 GMT
- Title: FairKV: Balancing Per-Head KV Cache for Fast Multi-GPU Inference
- Authors: Bingzhe Zhao, Ke Cheng, Aomufei Yuan, Yuxuan Tian, Ruiguang Zhong, Chengchen Hu, Tong Yang, Lian Yu,
- Abstract summary: KV cache techniques in Transformer models aim to reduce redundant computations at the expense of substantially increased memory usage.<n>Recently, state-of-the-art KV cache compression methods implement imbalanced, per-head allocation algorithms that dynamically adjust the KV cache budget for each attention head.<n>We propose Fair KV, a method designed to ensure fair memory usage among attention heads in systems employing imbalanced KV cache compression.
- Score: 11.148691507097341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: KV cache techniques in Transformer models aim to reduce redundant computations at the expense of substantially increased memory usage, making KV cache compression an important and popular research topic. Recently, state-of-the-art KV cache compression methods implement imbalanced, per-head allocation algorithms that dynamically adjust the KV cache budget for each attention head, achieving excellent performance in single-GPU scenarios. However, we observe that such imbalanced compression leads to significant load imbalance when deploying multi-GPU inference, as some GPUs become overburdened while others remain underutilized. In this paper, we propose FairKV, a method designed to ensure fair memory usage among attention heads in systems employing imbalanced KV cache compression. The core technique of FairKV is Fair-Copying, which replicates a small subset of memory-intensive attention heads across GPUs using data parallelism to mitigate load imbalance. Our experiments on popular models, including LLaMA 70b and Mistral 24b model, demonstrate that FairKV increases throughput by 1.66x compared to standard tensor parallelism inference. Our code will be released as open source upon acceptance.
Related papers
- DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
We introduce a new KV cache compression method dubbed DBudgetKV.
It features an attention-based metric to signal when the remaining KV cache is unlikely to match the full-cache performance, then halting the pruning process.
Our method is easy to integrate within LLM inference, not only optimizing memory space, but also showing reduced inference time compared to existing methods.
arXiv Detail & Related papers (2025-02-24T06:33:39Z) - MiniKV: Pushing the Limits of LLM Inference via 2-Bit Layer-Discriminative KV Cache [17.58398289266989]
Mini KV is a KV cache optimization method that simultaneously preserves long context task accuracy while significantly reducing KV cache size.
We show that Mini KV achieves 86% KV cache compression ratio while recovering over 98.5% of accuracy, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2024-11-27T06:10:49Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
We propose a plug-and-play method called textit KVSharer, which shares the KV cache between layers to achieve layer-wise compression.
Experiments show that textit KVSharer can reduce KV cache computation by 30%, thereby lowering memory consumption.
We verify that textit KVSharer is compatible with existing intra-layer KV cache compression methods, and combining both can further save memory.
arXiv Detail & Related papers (2024-10-24T08:06:41Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - UNComp: Uncertainty-Aware Long-Context Compressor for Efficient Large Language Model Inference [38.11539884622708]
UNComp is an uncertainty-aware compression scheme that adaptively compresses both the hidden states and the KV cache.
Our method achieves a 1.6x speedup in the prefilling stage and reduces the KV cache to 4.74% of its original size.
Remarkably, in needle-in-a-haystack tasks, UNComp outperforms the full-size KV cache even when compressed to 9.38% of its original size.
arXiv Detail & Related papers (2024-10-04T02:32:36Z) - CSKV: Training-Efficient Channel Shrinking for KV Cache in Long-Context Scenarios [13.144156413032896]
We introduce CSKV, a training-efficient Channel Shrinking technique for KV cache compression.
We show that CSKV can reduce the memory overhead of the KV cache by 80% while maintaining the model's long-context capability.
Our method can be seamlessly combined with quantization to further reduce the memory overhead, achieving a compression ratio of up to 95%.
arXiv Detail & Related papers (2024-09-16T17:36:50Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.
This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.
We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
We investigate whether attention-based information flow inside large language models (LLMs) is aggregated through noticeable patterns for long context processing.
Our observations reveal that LLMs aggregate information through Pyramidal Information Funneling where attention is scattering widely in lower layers.
Motivated by these insights, we developed Pyramid KV, a novel and effective KV cache compression method.
arXiv Detail & Related papers (2024-06-04T07:51:30Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
We introduce adaptive KV cache compression, a plug-and-play method that reduces the memory footprint of generative inference for Large Language Models (LLMs)
We conduct targeted profiling to discern the intrinsic structure of attention modules.
Based on the recognized structure, we then construct the KV cache in an adaptive manner: evicting long-range contexts on attention heads emphasizing local contexts, discarding non-special tokens on attention heads centered on special tokens, and only employing the standard KV cache for attention heads that broadly attend to all tokens.
arXiv Detail & Related papers (2023-10-03T05:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.