A Critical Assessment of Modern Generative Models' Ability to Replicate Artistic Styles
- URL: http://arxiv.org/abs/2502.15856v1
- Date: Fri, 21 Feb 2025 07:00:06 GMT
- Title: A Critical Assessment of Modern Generative Models' Ability to Replicate Artistic Styles
- Authors: Andrea Asperti, Franky George, Tiberio Marras, Razvan Ciprian Stricescu, Fabio Zanotti,
- Abstract summary: This paper presents a critical assessment of the style replication capabilities of contemporary generative models.<n>We examine how effectively these models reproduce traditional artistic styles while maintaining structural integrity and compositional balance.<n>The analysis is based on a new large dataset of AI-generated works imitating artistic styles of the past.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, advancements in generative artificial intelligence have led to the development of sophisticated tools capable of mimicking diverse artistic styles, opening new possibilities for digital creativity and artistic expression. This paper presents a critical assessment of the style replication capabilities of contemporary generative models, evaluating their strengths and limitations across multiple dimensions. We examine how effectively these models reproduce traditional artistic styles while maintaining structural integrity and compositional balance in the generated images. The analysis is based on a new large dataset of AI-generated works imitating artistic styles of the past, holding potential for a wide range of applications: the "AI-pastiche" dataset. The study is supported by extensive user surveys, collecting diverse opinions on the dataset and investigation both technical and aesthetic challenges, including the ability to generate outputs that are realistic and visually convincing, the versatility of models in handling a wide range of artistic styles, and the extent to which they adhere to the content and stylistic specifications outlined in prompts. This paper aims to provide a comprehensive overview of the current state of generative tools in style replication, offering insights into their technical and artistic limitations, potential advancements in model design and training methodologies, and emerging opportunities for enhancing digital artistry, human-AI collaboration, and the broader creative landscape.
Related papers
- Personalized Image Generation with Deep Generative Models: A Decade Survey [51.26287478042516]
We present a review of generalized personalized image generation across various generative models.
We first define a unified framework that standardizes the personalization process across different generative models.
We then provide an in-depth analysis of personalization techniques within each generative model, highlighting their unique contributions and innovations.
arXiv Detail & Related papers (2025-02-18T17:34:04Z) - IntroStyle: Training-Free Introspective Style Attribution using Diffusion Features [89.95303251220734]
We present a training-free framework to solve the style attribution problem, using the features produced by a diffusion model alone.<n>This is denoted as introspective style attribution (IntroStyle) and demonstrates superior performance to state-of-the-art models for style retrieval.<n>We also introduce a synthetic dataset of Style Hacks (SHacks) to isolate artistic style and evaluate fine-grained style attribution performance.
arXiv Detail & Related papers (2024-12-19T01:21:23Z) - A Framework for Critical Evaluation of Text-to-Image Models: Integrating Art Historical Analysis, Artistic Exploration, and Critical Prompt Engineering [0.0]
This paper proposes a novel interdisciplinary framework for the critical evaluation of text-to-image models.<n>By integrating art historical analysis, artistic exploration, and critical prompt engineering, the framework offers a more nuanced understanding of these models' capabilities and societal implications.<n>Case studies demonstrate the framework's practical application, showcasing how it can reveal biases related to gender, race, and cultural representation.
arXiv Detail & Related papers (2024-12-17T10:35:27Z) - KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities [93.74881034001312]
We conduct a systematic study on the fidelity of entities in text-to-image generation models.
We focus on their ability to generate a wide range of real-world visual entities, such as landmark buildings, aircraft, plants, and animals.
Our findings reveal that even the most advanced text-to-image models often fail to generate entities with accurate visual details.
arXiv Detail & Related papers (2024-10-15T17:50:37Z) - Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives.
Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation.
We aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
arXiv Detail & Related papers (2024-08-22T04:49:50Z) - GalleryGPT: Analyzing Paintings with Large Multimodal Models [64.98398357569765]
Artwork analysis is important and fundamental skill for art appreciation, which could enrich personal aesthetic sensibility and facilitate the critical thinking ability.
Previous works for automatically analyzing artworks mainly focus on classification, retrieval, and other simple tasks, which is far from the goal of AI.
We introduce a superior large multimodal model for painting analysis composing, dubbed GalleryGPT, which is slightly modified and fine-tuned based on LLaVA architecture.
arXiv Detail & Related papers (2024-08-01T11:52:56Z) - Automatic Generation of Fashion Images using Prompting in Generative Machine Learning Models [1.8817715864806608]
This work investigates methodologies for generating tailored fashion descriptions using two distinct Large Language Models and a Stable Diffusion model for fashion image creation.
Emphasizing adaptability in AI-driven fashion creativity, we focus on prompting techniques, such as zero-shot and few-shot learning.
Evaluation combines quantitative metrics such as CLIPscore with qualitative human judgment, highlighting strengths in creativity, coherence, and aesthetic appeal across diverse styles.
arXiv Detail & Related papers (2024-07-20T17:37:51Z) - CreativeSynth: Creative Blending and Synthesis of Visual Arts based on
Multimodal Diffusion [74.44273919041912]
Large-scale text-to-image generative models have made impressive strides, showcasing their ability to synthesize a vast array of high-quality images.
However, adapting these models for artistic image editing presents two significant challenges.
We build the innovative unified framework Creative Synth, which is based on a diffusion model with the ability to coordinate multimodal inputs.
arXiv Detail & Related papers (2024-01-25T10:42:09Z) - Diffusion Based Augmentation for Captioning and Retrieval in Cultural
Heritage [28.301944852273746]
This paper introduces a novel approach to address the challenges of limited annotated data and domain shifts in the cultural heritage domain.
By leveraging generative vision-language models, we augment art datasets by generating diverse variations of artworks conditioned on their captions.
arXiv Detail & Related papers (2023-08-14T13:59:04Z) - Challenges in creative generative models for music: a divergence
maximization perspective [3.655021726150369]
Development of generative Machine Learning models in creative practices is raising more interest among artists, practitioners and performers.
Most models are still unable to generate content that lay outside of the domain defined by the training dataset.
We propose an alternative prospective framework, starting from a new general formulation of ML objectives.
arXiv Detail & Related papers (2022-11-16T12:02:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.