Graph Attention Convolutional U-NET: A Semantic Segmentation Model for Identifying Flooded Areas
- URL: http://arxiv.org/abs/2502.15907v1
- Date: Fri, 21 Feb 2025 19:50:13 GMT
- Title: Graph Attention Convolutional U-NET: A Semantic Segmentation Model for Identifying Flooded Areas
- Authors: Muhammad Umair Danish, Madhushan Buwaneswaran, Tehara Fonseka, Katarina Grolinger,
- Abstract summary: This paper proposes an innovative approach, the Graph Attention Convolutional U-NET (GAC-UNET) model for automated identification of flooded areas.<n>The model incorporates a graph attention mechanism and Chebyshev layers into the U-Net architecture.<n> Empirical results demonstrate that the proposed GAC-UNET model, outperforms other approaches with 91% mAP, 94% dice score, and 89% IoU.
- Score: 0.7499722271664147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing impact of human-induced climate change and unplanned urban constructions has increased flooding incidents in recent years. Accurate identification of flooded areas is crucial for effective disaster management and urban planning. While few works have utilized convolutional neural networks and transformer-based semantic segmentation techniques for identifying flooded areas from aerial footage, recent developments in graph neural networks have created improvement opportunities. This paper proposes an innovative approach, the Graph Attention Convolutional U-NET (GAC-UNET) model, based on graph neural networks for automated identification of flooded areas. The model incorporates a graph attention mechanism and Chebyshev layers into the U-Net architecture. Furthermore, this paper explores the applicability of transfer learning and model reprogramming to enhance the accuracy of flood area segmentation models. Empirical results demonstrate that the proposed GAC-UNET model, outperforms other approaches with 91\% mAP, 94\% dice score, and 89\% IoU, providing valuable insights for informed decision-making and better planning of future infrastructures in flood-prone areas.
Related papers
- Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction [2.3964255330849356]
We explore the potential of Graph U-Nets for unsteady flow-field prediction.
We propose novel approaches to improve mesh-agnostic-temporal robustness prediction transient flow fields using Graph U-Nets.
Key enhancements to the Graph U-Net architecture provide increased flexibility in modeling node dynamics.
arXiv Detail & Related papers (2024-06-06T07:01:36Z) - FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive Graph-Based Learning [1.4216957119562985]
We introduce a novel inductive learning scheme and a generalizable GNN-based forecasting model that can process diverse graphs of cellular traffic with one-time training.
Experimental results show up to 9.8% performance improvement compared to the state-of-the-art.
arXiv Detail & Related papers (2024-05-14T07:53:23Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Interpretable A-posteriori Error Indication for Graph Neural Network Surrogate Models [0.0]
This work introduces an interpretability enhancement procedure for graph neural networks (GNNs)
The end result is an interpretable GNN model that isolates regions in physical space, corresponding to sub-graphs, that are intrinsically linked to the forecasting task.
The interpretable GNNs can also be used to identify, during inference, graph nodes that correspond to a majority of the anticipated forecasting error.
arXiv Detail & Related papers (2023-11-13T18:37:07Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - A Complex Network based Graph Embedding Method for Link Prediction [0.0]
We present a novel graph embedding approach based on the popularity-similarity and local attraction paradigms.
We show, using extensive experimental analysis, that the proposed method outperforms state-of-the-art graph embedding algorithms.
arXiv Detail & Related papers (2022-09-11T14:46:38Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - BLDNet: A Semi-supervised Change Detection Building Damage Framework
using Graph Convolutional Networks and Urban Domain Knowledge [1.9087335681007478]
We present BLDNet, a novel graph formulation for building damage change detection.
We use graph convolutional networks to efficiently learn these features in a semi-supervised framework.
We train and benchmark on the xBD dataset to validate the effectiveness of our approach.
arXiv Detail & Related papers (2022-01-25T15:19:30Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - A Comparative Study of Using Spatial-Temporal Graph Convolutional
Networks for Predicting Availability in Bike Sharing Schemes [13.819341724635319]
We present an Attention-based ST-GCN (AST-GCN) for predicting the number of available bikes in bike-sharing systems in cities.
Our experimental results are presented using two real-world datasets, Dublinbikes and NYC-Citi Bike.
arXiv Detail & Related papers (2021-04-21T17:13:29Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.