Discovery and Deployment of Emergent Robot Swarm Behaviors via Representation Learning and Real2Sim2Real Transfer
- URL: http://arxiv.org/abs/2502.15937v1
- Date: Fri, 21 Feb 2025 21:04:47 GMT
- Title: Discovery and Deployment of Emergent Robot Swarm Behaviors via Representation Learning and Real2Sim2Real Transfer
- Authors: Connor Mattson, Varun Raveendra, Ricardo Vega, Cameron Nowzari, Daniel S. Drew, Daniel S. Brown,
- Abstract summary: Given a swarm of limited-capability robots, we seek to automatically discover the set of possible emergent behaviors.<n>We present Real2Sim2Real Behavior Discovery via Self-Supervised Representation Learning.
- Score: 8.780553562960677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a swarm of limited-capability robots, we seek to automatically discover the set of possible emergent behaviors. Prior approaches to behavior discovery rely on human feedback or hand-crafted behavior metrics to represent and evolve behaviors and only discover behaviors in simulation, without testing or considering the deployment of these new behaviors on real robot swarms. In this work, we present Real2Sim2Real Behavior Discovery via Self-Supervised Representation Learning, which combines representation learning and novelty search to discover possible emergent behaviors automatically in simulation and enable direct controller transfer to real robots. First, we evaluate our method in simulation and show that our proposed self-supervised representation learning approach outperforms previous hand-crafted metrics by more accurately representing the space of possible emergent behaviors. Then, we address the reality gap by incorporating recent work in sim2real transfer for swarms into our lightweight simulator design, enabling direct robot deployment of all behaviors discovered in simulation on an open-source and low-cost robot platform.
Related papers
- DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGen is a novel framework that integrates differentiable physics simulation, differentiable rendering, and a vision-language model.
It can generate realistic robot demonstrations by minimizing the distance between the embedding of the language instruction and the embedding of the simulated observation.
Experiments demonstrate that with DiffGen, we could efficiently and effectively generate robot data with minimal human effort or training time.
arXiv Detail & Related papers (2024-05-12T15:38:17Z) - Learning to navigate efficiently and precisely in real environments [14.52507964172957]
Embodied AI literature focuses on end-to-end agents trained in simulators like Habitat or AI-Thor.
In this work we explore end-to-end training of agents in simulation in settings which minimize the sim2real gap.
arXiv Detail & Related papers (2024-01-25T17:50:05Z) - Teaching Robots to Build Simulations of Themselves [7.886658271375681]
We introduce a self-supervised learning framework to enable robots model and predict their morphology, kinematics and motor control using only brief raw video data.
By observing their own movements, robots learn an ability to simulate themselves and predict their spatial motion for various tasks.
arXiv Detail & Related papers (2023-11-20T20:03:34Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - Leveraging Human Feedback to Evolve and Discover Novel Emergent
Behaviors in Robot Swarms [14.404339094377319]
We seek to leverage human input to automatically discover a taxonomy of collective behaviors that can emerge from a particular multi-agent system.
Our proposed approach adapts to user preferences by learning a similarity space over swarm collective behaviors.
We test our approach in simulation on two robot capability models and show that our methods consistently discover a richer set of emergent behaviors than prior work.
arXiv Detail & Related papers (2023-04-25T15:18:06Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - An in-depth experimental study of sensor usage and visual reasoning of
robots navigating in real environments [20.105395754497202]
We study the performance and reasoning capacities of real physical agents, trained in simulation and deployed to two different physical environments.
We show, that for the PointGoal task, an agent pre-trained on wide variety of tasks and fine-tuned on a simulated version of the target environment can reach competitive performance without modelling any sim2real transfer.
arXiv Detail & Related papers (2021-11-29T16:27:29Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
We propose an approach that combines learning-based perception with model-based optimal control to navigate among humans.
Our approach is enabled by our novel data-generation tool, HumANav.
We demonstrate that the learned navigation policies can anticipate and react to humans without explicitly predicting future human motion.
arXiv Detail & Related papers (2020-03-20T16:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.