Human Guided Learning of Transparent Regression Models
- URL: http://arxiv.org/abs/2502.15992v1
- Date: Fri, 21 Feb 2025 23:15:12 GMT
- Title: Human Guided Learning of Transparent Regression Models
- Authors: Lukas Pensel, Stefan Kramer,
- Abstract summary: We present a human-in-the-loop (HIL) approach to permutation regression.<n>The model is a gradient boosted regression model that incorporates simple human-understandable constraints.<n>The approach, HuGuR, lets a human explore the search space of such transparent regression models.
- Score: 4.592493651895646
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a human-in-the-loop (HIL) approach to permutation regression, the novel task of predicting a continuous value for a given ordering of items. The model is a gradient boosted regression model that incorporates simple human-understandable constraints of the form x < y, i.e. item x has to be before item y, as binary features. The approach, HuGuR (Human Guided Regression), lets a human explore the search space of such transparent regression models. Interacting with HuGuR, users can add, remove, and refine order constraints interactively, while the coefficients are calculated on the fly. We evaluate HuGuR in a user study and compare the performance of user-built models with multiple baselines on 9 data sets. The results show that the user-built models outperform the compared methods on small data sets and in general perform on par with the other methods, while being in principle understandable for humans. On larger datasets from the same domain, machine-induced models begin to outperform the user-built models. Further work will study the trust users have in models when constructed by themselves and how the scheme can be transferred to other pattern domains, such as strings, sequences, trees, or graphs.
Related papers
- Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
We study the impact of data curation on iterated retraining of generative models.
We prove that, if the data is curated according to a reward model, the expected reward of the iterative retraining procedure is maximized.
arXiv Detail & Related papers (2024-06-12T21:28:28Z) - Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [115.501751261878]
Fine-tuning language models(LMs) on human-generated data remains a prevalent practice.
We investigate whether we can go beyond human data on tasks where we have access to scalar feedback.
We find that ReST$EM$ scales favorably with model size and significantly surpasses fine-tuning only on human data.
arXiv Detail & Related papers (2023-12-11T18:17:43Z) - Analysis of Interpolating Regression Models and the Double Descent
Phenomenon [3.883460584034765]
It is commonly assumed that models which interpolate noisy training data are poor to generalize.
The best models obtained are overparametrized and the testing error exhibits the double descent behavior as the model order increases.
We derive a result based on the behavior of the smallest singular value of the regression matrix that explains the peak location and the double descent shape of the testing error as a function of model order.
arXiv Detail & Related papers (2023-04-17T09:44:33Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - Robust priors for regularized regression [12.945710636153537]
Penalized regression approaches like ridge regression shrink toward zero but zero weights is usually not a sensible prior.
Inspired by simple and robust decisions humans use, we constructed non-zero priors for penalized regression models.
Models with robust priors had excellent worst-case performance.
arXiv Detail & Related papers (2020-10-06T10:43:14Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.