Concept Corrector: Erase concepts on the fly for text-to-image diffusion models
- URL: http://arxiv.org/abs/2502.16368v2
- Date: Sat, 08 Mar 2025 01:20:26 GMT
- Title: Concept Corrector: Erase concepts on the fly for text-to-image diffusion models
- Authors: Zheling Meng, Bo Peng, Xiaochuan Jin, Yueming Lyu, Wei Wang, Jing Dong,
- Abstract summary: Concept erasure aims to erase any undesired concepts that the models can generate.<n>We propose Concept Corrector, which checks target concepts based on visual features provided by final generated images predicted at certain time steps.<n>In the whole pipeline, our method changes no model parameters and only requires a given target concept as well as the corresponding replacement content.
- Score: 13.065682925662237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image diffusion models have demonstrated the underlying risk of generating various unwanted content, such as sexual elements. To address this issue, the task of concept erasure has been introduced, aiming to erase any undesired concepts that the models can generate. Previous methods, whether training-based or training-free, have primarily focused on the input side, i.e., texts. However, they often suffer from incomplete erasure due to limitations in the generalization from limited prompts to diverse image content. In this paper, motivated by the notion that concept erasure on the output side, i.e., generated images, may be more direct and effective, we propose Concept Corrector. It checks target concepts based on visual features provided by final generated images predicted at certain time steps. Further, it incorporates Concept Removal Attention to erase generated concept features. It overcomes the limitations of existing methods, which are either unable to remove the concept features that have been generated in images or rely on the assumption that the related concept words are contained in input prompts. In the whole pipeline, our method changes no model parameters and only requires a given target concept as well as the corresponding replacement content, which is easy to implement. To the best of our knowledge, this is the first erasure method based on intermediate-generated images, achieving the ability to erase concepts on the fly. The experiments on various concepts demonstrate its impressive erasure performance.
Related papers
- ACE: Attentional Concept Erasure in Diffusion Models [0.0]
Attentional Concept Erasure integrates a closed-form attention manipulation with lightweight fine-tuning.
We show that ACE achieves state-of-the-art concept removal efficacy and robustness.
Compared to prior methods, ACE better balances generality (erasing concept and related terms) and specificity (preserving unrelated content)
arXiv Detail & Related papers (2025-04-16T08:16:28Z) - Fantastic Targets for Concept Erasure in Diffusion Models and Where To Find Them [21.386640828092524]
Concept erasure has emerged as a promising technique for mitigating the risk of harmful content generation in diffusion models.
We propose the Adaptive Guided Erasure (AGE) method, which emphdynamically selects optimal target concepts tailored to each undesirable concept.
Results show that AGE significantly outperforms state-of-the-art erasure methods on preserving unrelated concepts while maintaining effective erasure performance.
arXiv Detail & Related papers (2025-01-31T08:17:23Z) - ACE: Anti-Editing Concept Erasure in Text-to-Image Models [73.00930293474009]
Existing concept erasure methods achieve superior results in preventing the production of erased concept from prompts.
We propose an Anti-Editing Concept Erasure (ACE) method, which not only erases the target concept during generation but also filters out it during editing.
arXiv Detail & Related papers (2025-01-03T04:57:27Z) - OmniPrism: Learning Disentangled Visual Concept for Image Generation [57.21097864811521]
Creative visual concept generation often draws inspiration from specific concepts in a reference image to produce relevant outcomes.
We propose OmniPrism, a visual concept disentangling approach for creative image generation.
Our method learns disentangled concept representations guided by natural language and trains a diffusion model to incorporate these concepts.
arXiv Detail & Related papers (2024-12-16T18:59:52Z) - ConceptPrune: Concept Editing in Diffusion Models via Skilled Neuron Pruning [10.201633236997104]
Large-scale text-to-image diffusion models have demonstrated impressive image-generation capabilities.
We present ConceptPrune, wherein we first identify critical regions within pre-trained models responsible for generating undesirable concepts.
Experiments across a range of concepts including artistic styles, nudity, object erasure, and gender debiasing demonstrate that target concepts can be efficiently erased by pruning a tiny fraction.
arXiv Detail & Related papers (2024-05-29T16:19:37Z) - Erasing Concepts from Text-to-Image Diffusion Models with Few-shot Unlearning [0.0]
We propose a novel concept-erasure method that updates the text encoder using few-shot unlearning.
Our method can erase a concept within 10 s, making concept erasure more accessible than ever before.
arXiv Detail & Related papers (2024-05-12T14:01:05Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
We propose a Separable Multi-concept Eraser (SepME) to eliminate unsafe concepts from large-scale diffusion models.
The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure.
Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
arXiv Detail & Related papers (2024-02-03T11:10:57Z) - Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers [24.64639078273091]
Concept erasure in text-to-image diffusion models aims to disable pre-trained diffusion models from generating images related to a target concept.
We propose Reliable Concept Erasing via Lightweight Erasers (Receler)
arXiv Detail & Related papers (2023-11-29T15:19:49Z) - Multi-Concept T2I-Zero: Tweaking Only The Text Embeddings and Nothing
Else [75.6806649860538]
We consider a more ambitious goal: natural multi-concept generation using a pre-trained diffusion model.
We observe concept dominance and non-localized contribution that severely degrade multi-concept generation performance.
We design a minimal low-cost solution that overcomes the above issues by tweaking the text embeddings for more realistic multi-concept text-to-image generation.
arXiv Detail & Related papers (2023-10-11T12:05:44Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images.
We present the Geom-Erasing, a novel concept removal method based on the geometric-driven control.
arXiv Detail & Related papers (2023-10-09T17:13:10Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability.
These models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos.
We propose an efficient method of ablating concepts in the pretrained model, preventing the generation of a target concept.
arXiv Detail & Related papers (2023-03-23T17:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.