Lattice-Based Pruning in Recurrent Neural Networks via Poset Modeling
- URL: http://arxiv.org/abs/2502.16525v1
- Date: Sun, 23 Feb 2025 10:11:38 GMT
- Title: Lattice-Based Pruning in Recurrent Neural Networks via Poset Modeling
- Authors: Rakesh Sengupta,
- Abstract summary: Recurrent neural networks (RNNs) are central to sequence modeling tasks, yet their high computational complexity poses challenges for scalability and real-time deployment.<n>We introduce a novel framework that models RNNs as partially ordered sets (posets) and constructs corresponding dependency lattices.<n>By identifying meet irreducible neurons, our lattice-based pruning algorithm selectively retains critical connections while eliminating redundant ones.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recurrent neural networks (RNNs) are central to sequence modeling tasks, yet their high computational complexity poses challenges for scalability and real-time deployment. Traditional pruning techniques, predominantly based on weight magnitudes, often overlook the intrinsic structural properties of these networks. We introduce a novel framework that models RNNs as partially ordered sets (posets) and constructs corresponding dependency lattices. By identifying meet irreducible neurons, our lattice-based pruning algorithm selectively retains critical connections while eliminating redundant ones. The method is implemented using both binary and continuous-valued adjacency matrices to capture different aspects of network connectivity. Evaluated on the MNIST dataset, our approach exhibits a clear trade-off between sparsity and classification accuracy. Moderate pruning maintains accuracy above 98%, while aggressive pruning achieves higher sparsity with only a modest performance decline. Unlike conventional magnitude-based pruning, our method leverages the structural organization of RNNs, resulting in more effective preservation of functional connectivity and improved efficiency in multilayer networks with top-down feedback. The proposed lattice-based pruning framework offers a rigorous and scalable approach for reducing RNN complexity while sustaining robust performance, paving the way for more efficient hierarchical models in both machine learning and computational neuroscience.
Related papers
- Exploring Neural Network Pruning with Screening Methods [3.443622476405787]
Modern deep learning models have tens of millions of parameters which makes the inference processes resource-intensive.
This paper proposes and evaluates a network pruning framework that eliminates non-essential parameters.
The proposed framework produces competitive lean networks compared to the original networks.
arXiv Detail & Related papers (2025-02-11T02:31:04Z) - Finite Element Neural Network Interpolation. Part I: Interpretable and Adaptive Discretization for Solving PDEs [44.99833362998488]
We present a sparse neural network architecture extending previous work on Embedded Finite Element Neural Networks (EFENN)<n>Due to their mesh-based structure, EFENN requires significantly fewer trainable parameters than fully connected neural networks.<n>Our FENNI framework, within the EFENN framework, brings improvements to the HiDeNN approach.
arXiv Detail & Related papers (2024-12-07T18:31:17Z) - Beyond Pruning Criteria: The Dominant Role of Fine-Tuning and Adaptive Ratios in Neural Network Robustness [7.742297876120561]
Deep neural networks (DNNs) excel in tasks like image recognition and natural language processing.
Traditional pruning methods compromise the network's ability to withstand subtle perturbations.
This paper challenges the conventional emphasis on weight importance scoring as the primary determinant of a pruned network's performance.
arXiv Detail & Related papers (2024-10-19T18:35:52Z) - Geometric sparsification in recurrent neural networks [0.8851237804522972]
A common technique for ameliorating the computational costs of running large neural models is sparsification.<n>We propose a new technique for sparsification of recurrent neural nets (RNNs) called moduli regularization.<n>We show that moduli regularization induces more stable recurrent neural nets, and achieves high fidelity models above 90% sparsity.
arXiv Detail & Related papers (2024-06-10T14:12:33Z) - Towards Efficient Deep Spiking Neural Networks Construction with Spiking Activity based Pruning [17.454100169491497]
We propose a structured pruning approach based on the activity levels of convolutional kernels named Spiking Channel Activity-based (SCA) network pruning framework.
Inspired by synaptic plasticity mechanisms, our method dynamically adjusts the network's structure by pruning and regenerating convolutional kernels during training, enhancing the model's adaptation to the current target task.
arXiv Detail & Related papers (2024-06-03T07:44:37Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.
LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.
Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead.
Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure.
Existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space.
arXiv Detail & Related papers (2020-11-04T07:43:01Z) - Kernel-Based Smoothness Analysis of Residual Networks [85.20737467304994]
Residual networks (ResNets) stand out among these powerful modern architectures.
In this paper, we show another distinction between the two models, namely, a tendency of ResNets to promote smoothers than gradients.
arXiv Detail & Related papers (2020-09-21T16:32:04Z) - Recurrent Graph Tensor Networks: A Low-Complexity Framework for
Modelling High-Dimensional Multi-Way Sequence [24.594587557319837]
We develop a graph filter framework for approximating the modelling of hidden states in Recurrent Neural Networks (RNNs)
The proposed framework is validated through several multi-way sequence modelling tasks and benchmarked against traditional RNNs.
We show that the proposed RGTN is capable of not only out-performing standard RNNs, but also mitigating the Curse of Dimensionality associated with traditional RNNs.
arXiv Detail & Related papers (2020-09-18T10:13:36Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.