Language Model Fine-Tuning on Scaled Survey Data for Predicting Distributions of Public Opinions
- URL: http://arxiv.org/abs/2502.16761v1
- Date: Mon, 24 Feb 2025 00:31:33 GMT
- Title: Language Model Fine-Tuning on Scaled Survey Data for Predicting Distributions of Public Opinions
- Authors: Joseph Suh, Erfan Jahanparast, Suhong Moon, Minwoo Kang, Serina Chang,
- Abstract summary: Large language models (LLMs) predict survey responses in advance during the early stages of survey design.<n>We propose directly fine-tuning LLMs to predict response distributions by leveraging unique structural characteristics of survey data.<n>We show that fine-tuning on SubPOP greatly improves the match between LLM predictions and human responses across various subpopulations.
- Score: 4.020002996724124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) present novel opportunities in public opinion research by predicting survey responses in advance during the early stages of survey design. Prior methods steer LLMs via descriptions of subpopulations as LLMs' input prompt, yet such prompt engineering approaches have struggled to faithfully predict the distribution of survey responses from human subjects. In this work, we propose directly fine-tuning LLMs to predict response distributions by leveraging unique structural characteristics of survey data. To enable fine-tuning, we curate SubPOP, a significantly scaled dataset of 3,362 questions and 70K subpopulation-response pairs from well-established public opinion surveys. We show that fine-tuning on SubPOP greatly improves the match between LLM predictions and human responses across various subpopulations, reducing the LLM-human gap by up to 46% compared to baselines, and achieves strong generalization to unseen surveys and subpopulations. Our findings highlight the potential of survey-based fine-tuning to improve opinion prediction for diverse, real-world subpopulations and therefore enable more efficient survey designs. Our code is available at https://github.com/JosephJeesungSuh/subpop.
Related papers
- Llms, Virtual Users, and Bias: Predicting Any Survey Question Without Human Data [0.0]
We use Large Language Models (LLMs) to create virtual populations that answer survey questions.
We evaluate several LLMs-including GPT-4o, GPT-3.5, Claude 3.5-Sonnet, and versions of the Llama and Mistral models-comparing their performance to that of a traditional Random Forests algorithm.
arXiv Detail & Related papers (2025-03-11T16:27:20Z) - Specializing Large Language Models to Simulate Survey Response Distributions for Global Populations [49.908708778200115]
We are the first to specialize large language models (LLMs) for simulating survey response distributions.<n>As a testbed, we use country-level results from two global cultural surveys.<n>We devise a fine-tuning method based on first-token probabilities to minimize divergence between predicted and actual response distributions.
arXiv Detail & Related papers (2025-02-10T21:59:27Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We show that our approach consistently boosts DPO by a considerable margin.
Our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere data expansion.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions [0.0]
Large Language Models (LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities.
Their widespread deployment has brought to light significant concerns regarding biases embedded within these models.
This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases.
arXiv Detail & Related papers (2024-09-24T19:50:38Z) - Vox Populi, Vox AI? Using Language Models to Estimate German Public Opinion [45.84205238554709]
We generate a synthetic sample of personas matching the individual characteristics of the 2017 German Longitudinal Election Study respondents.
We ask the LLM GPT-3.5 to predict each respondent's vote choice and compare these predictions to the survey-based estimates.
We find that GPT-3.5 does not predict citizens' vote choice accurately, exhibiting a bias towards the Green and Left parties.
arXiv Detail & Related papers (2024-07-11T14:52:18Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
We investigate the extent to which large language models (LLMs) reflect human response biases, if at all.
We design a dataset and framework to evaluate whether LLMs exhibit human-like response biases in survey questionnaires.
Our comprehensive evaluation of nine models shows that popular open and commercial LLMs generally fail to reflect human-like behavior.
arXiv Detail & Related papers (2023-11-07T15:40:43Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - AI-Augmented Surveys: Leveraging Large Language Models and Surveys for Opinion Prediction [0.0]
Large language models (LLMs) that produce human-like responses have begun to revolutionize research practices in the social sciences.
We develop a novel methodological framework that fine-tunes LLMs with repeated cross-sectional surveys.
We introduce two new applications of the AI-augmented survey: retrodiction (i.e., predict year-level missing responses) and unasked opinion prediction.
arXiv Detail & Related papers (2023-05-16T17:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.