Diffusion Models for Tabular Data: Challenges, Current Progress, and Future Directions
- URL: http://arxiv.org/abs/2502.17119v1
- Date: Mon, 24 Feb 2025 13:01:33 GMT
- Title: Diffusion Models for Tabular Data: Challenges, Current Progress, and Future Directions
- Authors: Zhong Li, Qi Huang, Lincen Yang, Jiayang Shi, Zhao Yang, Niki van Stein, Thomas Bäck, Matthijs van Leeuwen,
- Abstract summary: Diffusion models have emerged as superior alternatives to Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs)<n>Diffusion models have begun to showcase similar advantages over GANs and VAEs, achieving significant performance breakthroughs.
- Score: 14.735104900041401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, generative models have achieved remarkable performance across diverse applications, including image generation, text synthesis, audio creation, video generation, and data augmentation. Diffusion models have emerged as superior alternatives to Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) by addressing their limitations, such as training instability, mode collapse, and poor representation of multimodal distributions. This success has spurred widespread research interest. In the domain of tabular data, diffusion models have begun to showcase similar advantages over GANs and VAEs, achieving significant performance breakthroughs and demonstrating their potential for addressing unique challenges in tabular data modeling. However, while domains like images and time series have numerous surveys summarizing advancements in diffusion models, there remains a notable gap in the literature for tabular data. Despite the increasing interest in diffusion models for tabular data, there has been little effort to systematically review and summarize these developments. This lack of a dedicated survey limits a clear understanding of the challenges, progress, and future directions in this critical area. This survey addresses this gap by providing a comprehensive review of diffusion models for tabular data. Covering works from June 2015, when diffusion models emerged, to December 2024, we analyze nearly all relevant studies, with updates maintained in a \href{https://github.com/Diffusion-Model-Leiden/awesome-diffusion-models-for-tabular-data}{GitHub repository}. Assuming readers possess foundational knowledge of statistics and diffusion models, we employ mathematical formulations to deliver a rigorous and detailed review, aiming to promote developments in this emerging and exciting area.
Related papers
- A Comprehensive Survey on Diffusion Models and Their Applications [0.4218593777811082]
Diffusion Models are probabilistic models that create realistic samples by simulating the diffusion process.
These models have gained popularity in domains such as image processing, speech synthesis, and natural language processing.
This review aims to facilitate a deeper understanding and broader adoption of Diffusion Models.
arXiv Detail & Related papers (2024-07-01T17:10:29Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - The Rise of Diffusion Models in Time-Series Forecasting [5.808096811856718]
The paper includes comprehensive background information on diffusion models, detailing their conditioning methods and reviewing their use in time-series forecasting.
The analysis covers 11 specific time-series implementations, the intuition and theory behind them, the effectiveness on different datasets, and a comparison among each other.
arXiv Detail & Related papers (2024-01-05T11:35:10Z) - A Survey on Video Diffusion Models [103.03565844371711]
The recent wave of AI-generated content (AIGC) has witnessed substantial success in computer vision.
Due to their impressive generative capabilities, diffusion models are gradually superseding methods based on GANs and auto-regressive Transformers.
This paper presents a comprehensive review of video diffusion models in the AIGC era.
arXiv Detail & Related papers (2023-10-16T17:59:28Z) - A Comprehensive Survey on Generative Diffusion Models for Structured
Data [0.0]
generative diffusion models have achieved a rapid paradigm shift in deep generative models.
Structured data has been received comparatively limited attention from the deep learning research community.
This review serves as a catalyst for the research community, promoting developments in generative diffusion models for structured data.
arXiv Detail & Related papers (2023-06-07T04:26:41Z) - Diffusion Models for Time Series Applications: A Survey [23.003273147019446]
Diffusion models are used in image, video, and text synthesis nowadays.
We focus on diffusion-based methods for time series forecasting, imputation, and generation.
We conclude the common limitation of diffusion-based methods and highlight potential future research directions.
arXiv Detail & Related papers (2023-05-01T02:06:46Z) - Diffusion Models in Vision: A Survey [73.10116197883303]
A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage.<n> Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens.
arXiv Detail & Related papers (2022-09-10T22:00:30Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.