Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective
- URL: http://arxiv.org/abs/2502.17262v1
- Date: Mon, 24 Feb 2025 15:44:57 GMT
- Title: Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective
- Authors: Chengyin Xu, Kaiyuan Chen, Xiao Li, Ke Shen, Chenggang Li,
- Abstract summary: Accurately predicting downstream task performance prior to model training is crucial for efficient resource allocation.<n>Existing performance prediction methods suffer from limited accuracy and reliability.<n>We propose a Clustering-On-Difficulty (COD) downstream performance prediction framework.
- Score: 5.09611816929943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancements in computing dramatically increase the scale and cost of training Large Language Models (LLMs). Accurately predicting downstream task performance prior to model training is crucial for efficient resource allocation, yet remains challenging due to two primary constraints: (1) the "emergence phenomenon", wherein downstream performance metrics become meaningful only after extensive training, which limits the ability to use smaller models for prediction; (2) Uneven task difficulty distributions and the absence of consistent scaling laws, resulting in substantial metric variability. Existing performance prediction methods suffer from limited accuracy and reliability, thereby impeding the assessment of potential LLM capabilities. To address these challenges, we propose a Clustering-On-Difficulty (COD) downstream performance prediction framework. COD first constructs a predictable support subset by clustering tasks based on difficulty features, strategically excluding non-emergent and non-scalable clusters. The scores on the selected subset serve as effective intermediate predictors of downstream performance on the full evaluation set. With theoretical support, we derive a mapping function that transforms performance metrics from the predictable subset to the full evaluation set, thereby ensuring accurate extrapolation of LLM downstream performance. The proposed method has been applied to predict performance scaling for a 70B LLM, providing actionable insights for training resource allocation and assisting in monitoring the training process. Notably, COD achieves remarkable predictive accuracy on the 70B LLM by leveraging an ensemble of small models, demonstrating an absolute mean deviation of 1.36% across eight important LLM evaluation benchmarks.
Related papers
- R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference [77.47238561728459]
R-Sparse is a training-free activation sparsity approach capable of achieving high sparsity levels in advanced LLMs.
Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate that R-Sparse achieves comparable performance at 50% model-level sparsity.
arXiv Detail & Related papers (2025-04-28T03:30:32Z) - Can Pre-training Indicators Reliably Predict Fine-tuning Outcomes of LLMs? [32.04523360747506]
We construct a dataset using 50 1B parameter LLM variants with systematically varied pre-training configurations.
We introduce novel unsupervised and supervised proxy metrics derived from pre-training that successfully reduce the relative performance prediction error rate by over 50%.
arXiv Detail & Related papers (2025-04-16T21:19:09Z) - Attention Pruning: Automated Fairness Repair of Language Models via Surrogate Simulated Annealing [14.114970711442512]
This paper introduces Attention Pruning, a fairness-aware simulated annealing approach to prune attention heads in large language models (LLMs)
Our experiments show that Attention Pruning achieves up to $40%$ reduction in gender bias and outperforms the state-of-the-art bias mitigation strategies.
arXiv Detail & Related papers (2025-03-20T03:02:32Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
We introduce Unsupervised Prefix Fine-Tuning (UPFT) to enhance large language models' reasoning efficiency.
UPFT removes the need for labeled data or exhaustive sampling.
Experiments show that UPFT matches the performance of supervised methods.
arXiv Detail & Related papers (2025-03-04T18:56:03Z) - The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
We present the first systematic exploration of optimal sparse pre-training configurations for large language models.<n>We find that initiating pruning at 25% of total training compute and concluding at 75% achieves near-optimal final evaluation loss.<n>We propose a new scaling law that modifies the Chinchilla scaling law to use the average parameter count over pre-training.
arXiv Detail & Related papers (2025-01-21T20:23:22Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - Weak Supervision Performance Evaluation via Partial Identification [46.73061437177238]
Programmatic Weak Supervision (PWS) enables supervised model training without direct access to ground truth labels.
We present a novel method to address this challenge by framing model evaluation as a partial identification problem.
Our approach derives reliable bounds on key metrics without requiring labeled data, overcoming core limitations in current weak supervision evaluation techniques.
arXiv Detail & Related papers (2023-12-07T07:15:11Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - FORML: Learning to Reweight Data for Fairness [2.105564340986074]
We introduce Fairness Optimized Reweighting via Meta-Learning (FORML)
FORML balances fairness constraints and accuracy by jointly optimizing training sample weights and a neural network's parameters.
We show that FORML improves equality of opportunity fairness criteria over existing state-of-the-art reweighting methods by approximately 1% on image classification tasks and by approximately 5% on a face prediction task.
arXiv Detail & Related papers (2022-02-03T17:36:07Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - An Information Bottleneck Approach for Controlling Conciseness in
Rationale Extraction [84.49035467829819]
We show that it is possible to better manage this trade-off by optimizing a bound on the Information Bottleneck (IB) objective.
Our fully unsupervised approach jointly learns an explainer that predicts sparse binary masks over sentences, and an end-task predictor that considers only the extracted rationale.
arXiv Detail & Related papers (2020-05-01T23:26:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.